Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Leigh S. Schmidt x
Clear All Modify Search

Seedlings from seven open-pollinated selections of Chinese wingnut (Pterocarya stenoptera) (WN) representing collections of the USDA-ARS National Clonal Germplasm Repository at Davis, CA, and the University of California at Davis were evaluated as rootstocks for resistance to Phytophthora cinnamomi and P. citricola and graft compatibility with scions of five cultivars of Persian walnut (Juglans regia). Seedlings of Northern California black walnut (NCB) (J. hindsii) and Paradox hybrid (PH) (typically J. hindsii × J. regia) were used as standards. In greenhouse experiments, potted plants of the rootstocks were subjected to intermittent flooding in soil artificially infested with the pathogens. All WN seedlings were relatively resistant to the pathogens (means of 0% to 36% of root and crown length rotted) compared with NCB (44% to 100%) and PH seedlings (11% to 100%). Negligible disease occurred in flooded control soil without the pathogens. In 9-year graft compatibility trials in an orchard, NCB and PH rootstocks supported relatively good survival and growth of all tested scion cultivars (‘Chandler’, ‘Hartley’, ‘Serr’, ‘Tulare’, and ‘Vina’; final scion survival 80% to 100%, mean scion circumference increase 292 to 541 mm), whereas results with WN were mixed. Wingnut rootstocks from all sources were incompatible with ‘Chandler’ (final scion survival 20% to 60%, scion circumference increase 17 to 168 mm). Conversely, all WN rootstocks from all sources were compatible with ‘Tulare’ and ‘Vina’ (final scion survival 80% to 100%, scion circumference increase 274 to 556 mm). Use of the WN rootstocks produced variable results in ‘Hartley’ and ‘Serr’ (final scion survival 10% to 100%, mean scion circumference increase 69 to 542 mm). There was a tendency for more rootstock sprouts on WN selections than on NCB or PH. In a commercial walnut orchard infested with P. cinnamomi, ‘Hartley’ survived and grew markedly better on WN selections than on PH. High resistance to P. cinnamomi and P. citricola was common to all of the WN selections. The results indicate that WN selections may be useful rootstocks for cultivars Tulare and Vina in soils infested with P. cinnamomi or P. citricola and that WN selections may contribute valuable resistance to these pathogens in walnut rootstock breeding efforts.

Free access

Species of Phytophthora are serious soilborne pathogens of persian (english) walnut, causing crown and root rot and associated production losses worldwide. To facilitate the development of improved walnut rootstocks, we examined resistance of 48 diverse clones and seedlings of Juglans species to P. cinnamomi and P. citricola. Plants were micropropagated, acclimatized to a greenhouse environment, and then exposed to the pathogens in artificially infested potting soil mix. Inoculated plants, as well as noninoculated controls, were subjected to soil flooding for 48 hours every 2 weeks to facilitate infection by the pathogens. Two to 3 months after inoculation, resistance to the pathogens was assessed according to the severity of crown and root rot. Clonal hybrids of J. californica × J. regia were highly susceptible to the pathogens (means 52% to 76% root crown length rotted), while several clones of J. microcarpa × J. regia were significantly less susceptible (means 8% to 79% crown length rotted). Among clones of other parentages tested, including: J. microcarpa, (J. californica × J. nigra) × J. regia, J. hindsii × J. regia, (J. hindsii × J. regia) × J. regia, [(J. major × J. hindsii) × J. nigra] × J. regia, and J. nigra × J. regia, responses varied, but tended to be intermediate. When ‘Serr’ scions were budded or grafted on J. microcarpa × J. regia clone ‘RX1’ or Paradox (J. hindsii × J. regia) seedling rootstocks in a commercial orchard infested with P. cinnamomi, all trees on ‘RX1’ remained healthy, whereas only 49% of those on Paradox survived. Thus, useful resistance to Phytophthora is available among J. microcarpa × J. regia hybrids and is evident in ‘RX1’ rootstock.

Free access