Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Leigh Archer x
Clear All Modify Search
Authors: and

The bacterial pathogen associated with citrus huanglongbing (HLB) resides in the phloem of affected trees. The widespread abundance of the vector in Florida, the Asian citrus psyllid (Diaphorina citri), and the location of the pathogen in the tree vascular tissue limits the efficacy of foliar-applied therapies. Trunk injection is a crop protection strategy that applies therapeutic compounds directly into the tree vascular system, enabling their systemic distribution within the tree. However, limited information is available on the most effective methodology for implementing trunk injection at the commercial scale and the extent of damage inflicted by the injection. In this study, 5-year-old HLB-affected ‘Midsweet’ sweet orange (Citrus sinensis) trees were injected with the insecticide imidacloprid, the antibacterial oxytetracycline, or water. Injections occurred in Jun and Oct 2020 using three trunk injection techniques. Trees were monitored for external wounding and internal damage associated with injection, as well as tree health, bacterial titers, and yield for two production seasons. Low-pressure injection caused the least damage; however, it was less effective at delivering the tested compounds than medium- or high-pressure injection. Despite causing the greatest extent of external and internal damage at the injection site, injection of oxytetracycline significantly improved tree health, reduced bacterial titers, and increased yield in the two seasons of this study. Imidacloprid injection caused less wound damage but did not result in any lasting benefits to the trees. These results suggest that trunk injection of oxytetracycline could be an effective strategy for managing HLB and that the damage inflicted by this crop protection strategy can be reduced by selecting a suitable injection technique.

Open Access

Huanglongbing (HLB), which is associated with the phloem-limited bacteria Candidatus Liberibacter asiaticus (CLas), is a devastating disease that affects citrus trees worldwide. Because of the pervasiveness of the bacteria and psyllid vector, the disease is considered endemic in Florida. Although the effects of CLas on tree growth and physiology have been investigated for decades, most studies compared infected and noninfected trees under greenhouse conditions. This study used newly planted field-grown ‘Valencia’ sweet orange (Citrus sinensis) trees on two different rootstocks to monitor the distribution and accumulation of CLas in aboveground and belowground tissues following natural psyllid colonization and assess tree physiological responses and biomass reductions under HLB-endemic conditions. Trees were transplanted into the field with individual protective covers (IPCs), which are used to exclude psyllids and prevent infection. Openings were cut in the IPCs of half of the trees; to promote infection, these IPCs were temporarily removed during the main vegetative flushing period when psyllid populations were high. All trees that were exposed to psyllids became infected and displayed the symptoms typically associated with HLB. Throughout the study, higher levels of CLas were detected in the leaves compared with those in the fibrous roots. Trees that were not exposed to psyllids remained noninfected and healthy. After 18 months, a subset of trees was excavated to assess biomass differences between infected and noninfected trees. Infected trees had root system reductions of 37% and shoot system reductions of 20%, thereby significantly reducing the belowground-to-aboveground biomass ratio. Fibrous root loss was 49% and more severe than the loss of the rest of the root tissue. This study is the first to demonstrate the full extent of damage caused by CLas infection under natural HLB-endemic conditions. The results confirm previous observations that suggested fibrous root loss as one of the major consequences of infection and colonization with CLas. They also reinforce the benefits of using IPCs to prevent infection of young citrus trees during the first years of growth in the field.

Open Access