Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Larry W. Barnes x
Clear All Modify Search

An experiment was initiated in June and Aug. 2004 to determine affects of ozonated fertilizer–injected water on plant growth of chrysanthemum (Chrysanthemum× morifoliumT. de Romatuelle `Covington'). Aliquots (20 L) of reverse osmosis water were amended with 0, 50, and 300 mg·L-1 N (21N–3.1P–5.8K) water-soluble fertilizer and exposed to ozone (O3) gas for 0, 30, 60, or 120 s at a flow rate of 300 mL/min. Containers were sealed and allowed to set for 15 min for O3 diffusion. Treated water was used to irrigate plants. Plants were in 10.2-cm pots and grown until floral initiation. Plants were harvested on 12 Aug. 2004 or 24 Nov. 2004. Growth index (height x canopy width × canopy width in a perpendicular direction/3), and shoot and root dry masses were determined. Interactions between fertility concentration and ozone exposure rates were nonsignificant (P≤ 0.05). Significant main effect differences occurred in growth index and shoot/root dry masses in response to fertilizer concentrations, but growth measures were not affected by ozone exposure. Peak ozone concentrations in fertilizer-injected irrigation water averaged 0.21 mg·L-1 O3 (120 s exposure at 300 mL·L-1) after 15 min diffusion time. At 20 min diffusion times, ozone levels dropped to 0 mg·L-1. No gross morphological differences or obvious necrosis typical of ozone damage on chrysanthemum occurred at any O3 exposure level. No observable nutritional deficiencies were noted. Vegetative growth of chrysanthemum was not directly injured by irrigation water that was exposed to ozone gas for 0 to 120 s at a 300 mL/min flow rate.

Free access