Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Larry A. Stein x
Clear All Modify Search

Abstract

Adjuvants at various concentrations were evaluated for phytotoxicity and capacity to enhance foliar absorption of N and P. Some adjuvants among the following classes were phytotoxic to soybean (Glycine max Merr.) leaves at concentrations of 0.25% and 0.5% active ingredient on a volume or weight/volume basis: sulfonates, alcohols, ethyoxylated hydrocarbons, esters, sulfates, and amines. Many adjuvants in the following classes: alcohols, sulfonates, ethoxylated hydrocarbons, polyethylene glycols, carbohydrates, proteins, and phosphates were not phytotoxic at concentrations as high as 1.0%. Sometimes increasing phytotoxicity occurred at increasing concentrations, but the humectants, such as glycerol and propylene glycol, were not phytotoxic at concentrations of 10.0%. Selected adjuvants were mixed with a foliar fertilizer (12.0N–1.7P–3.3K–0.5S) and evaluated for enhancement of foliar absorption of N and P. The average increases in percentage of N and P for the glycerol, lecithin, and Pluronic L-121 (an ethyoxylated hydrocarbon), and foliar fertilizer combinations, respectively, were 8.9%, 2.2%, and 2.5% for N and 34.2%, 27.6%, and 20.8% for P over the foliar fertilizer control, respectively, for the 3 adjuvants.

Open Access

Abstract

Ethephon was trunk injected into the transpiration stream of pecan trees 10 to 21 days before shuck split in an attempt to expedite shuck opening in 1983. Ethephon concentrations were based on the estimated amount of water flowing through the tree per day. At College Station and Hondo, Texas, a 10 ppm injection significantly increased shuck opening. Leaf drop was only 35% at 10 ppm compared to much higher leaf drop in previous research. There was no difference in number of nuts set and the extent of limb dieback between the control trees and those trunk injected with 10 ppm ethephon. At Ft. Stockton and Midkiff, Texas, injections of 10, 20, and 40 ppm increased nut opening and early leaf drop, but reduced fruit set in the following year (1984). There was no limb dieback at these locations. Injections of trees in El Paso failed to cause shuck opening.

Open Access

Pecan (Carya illinoinensis) cultivars are commercially propagated by grafting and budding. The whip graft, bark graft and four-flap graft, the most frequently used techniques for pecan grafting, require dormant scions, collected and stored for 60 to 120 days before the spring grafting season. Poor graft success is sometimes attributed to poor handling and storage of the scionwood. Moisture content of packing material, sealing cut ends of the scions with wax, and use of polyethylene bags was evaluated in 1998 and 1999. Scions were collected in early February each year, and stored for 60 to 70 days in a household refrigerator at 2 °C (35.6 °F) under different treatment regimes. Scion viability was tested by bark grafting on limbs of mature pecan trees. Moisture of the scions was affected each year by the amount of water added to packing material and by sealing the cut ends, but the differences did not impact graft success. In 1998, graft success rate was equally good among scions stored in polyethylene bags with different amounts of added moisture, whether cut ends were sealed or not. Graft success in 1999 was affected by an interaction of sealing the cut ends, packing material and location of grafting.

Full access

The objective of this work was to determine the effect of within-row plant spacing and mulching on growth, quality, and yield of an experimental semi-savoy spinach (Spinacea oleracea L.) genotype `Ark-310' to produce a high quality fresh market product. Within-row spacings were 15 and 25 cm, and mulching treatments were bare-soil and black polyethylene mulch. Plants were destructively sampled weekly (1995-96) or bi-weekly (1997-98) for leaf area (LA), leaf number, leaf dry weight (LDW) and root dry weight (RDW) measurements. Plants grown on plastic mulch at 25-cm spacing had greater LA, LDW, and RDW than when grown at 15-cm spacing on mulch or bare-soil. Leaf number and specific leaf area (LA/LDW) were less affected by either spacing or mulching. The amount of soil on harvested leaves was lower on plants grown on plastic mulch in both years. In one year, total yields (MT/ha-1) were 42% higher at 15-cm than at 25-cm plant spacing, while mulch increased yields by 20%, independently of plant spacing. These effects were not evident in the year with higher rainfall (1997-98).

Free access

Abstract

Summer and fall irrigation treatments increased pecan yield, trunk diameter, and percent kernel over nonirrigated trees. Sticktights and viviparous nuts were reduced by late-season irrigation in a dry year (1984). All irrigation treatments increased pecan size; the most frequently irrigated plots had the largest pecans and least tree water stress as measured by a pressure bomb in 1984. The less water was applied in Sept, and Oct. 1984, the more sticktights resulted. Late-season water stress in all treatments indicated that water was needed just before shuck opening.

Open Access

Cucumber (Cucumis sativus L.) and habanero pepper (Capsicum chinense Jacq.) growers have observed increased crop yield by placing bees in close proximity to these vegetable crops. However, adding managed bees typically may not be feasible for small-scale farmers or homeowners. Limited studies have demonstrated the potential of pollinator-attracting plants to be used as a lure to enhance the visitation of pollinators to adjacent food crops. This study evaluated the potential of adding pollinator-attracting plants in close proximity to cucumber and habanero plants to improve yields by either establishing permanent perennial companion plantings adjacent to the crops or interplanting annual companion plants within the row anew with each crop. The perennial treatment group consisted of Phyla nodiflora (L.) Greene, Borrichia frutescens (L.) DC., Salvia farinacea Benth. ‘Henry Duelberg’, and Eysenhardtia texana Scheele. The annual treatment group consisted of Cosmos bipinnatus Cav., Zinnia ×marylandica D.M. Spooner, Stimart, & T. Boyle, Borago officinalis L., and Ocimum basilicum L. Multiple cropping cycles were initiated using both spring and fall seasons, and yield was assessed for three successive cropping cycles. Fruit quality was unaffected by pollinator-attracting companion plantings; however total and marketable yields were impacted. Cucumber yields were significantly (P < 0.05) greater during fall harvests with annual companion plantings and with the second fall harvest in perennial companion plant plots. Perennial companion plots initially yielded less than control plots or annual companion plots due to the space allocated to the companion plantings and the fewer pollinators initially attracted to the plots compared with the annual companion plantings. When the perennial plots became more established, they resulted in similar yields as the annual companion planting plots. Although habanero yields were increased by annual companion plantings in spring and fall, cucumbers were unaffected by companion plantings in spring. This suggests a potential seasonality for the efficacy of some pollinator-attracting companion plantings for a given crop that could offer an opportunity to tailor companion plantings to attract specific pollinators at different times of the year.

Open Access

The Coordinated Educational Marketing Assistance Program (CEMAP) is one of the oldest marketing assistance programs for ornamentals in the United States. The goal of this program is to identify outstanding plants for Texas and to provide support for the nursery industry, thereby making plants with superior performance available to the people of Texas. The CEMAP program is a cooperative effort between the Texas nursery industry and Texas A&M Univ. The CEMAP Executive Board has eight individuals representing extension, research, and teaching plus two administrative liasions and the Industry Advisory Board has ≈50 members from all segments of the ornamentals industry in Texas. Funding for the CEMAP program comes from direct industry support and from the public through the sale of plant tags or other promotional materials which bear the Texas Superstars logo. The logo is trademarked and licensed to printing companies who handle the administration of royalties to the program. The Executive Board makes the final decision about which plants are designated Texas Superstars. Promotional support for the plants is provided by CEMAP through point of purchase materials and publicity through print, radio, and television. In addition, the Texas Nursery and Landscape Association in cooperation with the Texas Department of Agriculture are conducting a publicity campaign to inform the public about Texas Superstars.

Free access

Plant trialing and marketing assistance programs have become popular in recent years with several state and some regional programs emerging. Successful implementation requires considerable labor, facilities, and monetary resources for evaluation of large numbers of taxa over several years to ensure that plants are well adapted to the region of interest. Research and development funds, dedicated facilities, and cooperator commitment to trialing programs can be limiting during the early years of the programs. Involvement in plant trialing programs allows students to be exposed to plot layout planning, statistical design, plant maintenance, data collection and analysis, and professional communication of trial results. Construction of facilities for conducting plant trials, growing plants for use in trials, trial installation, and maintenance of plants all provide practical hands-on horticultural training. Replicated plant trials provide the latest information on regionally adapted taxa for inclusion in classroom instruction and publications. Plant trialing programs benefit from labor assistance, development of dedicated facilities, and the opportunity to share equipment and supplies among teaching, trialing, and student research projects.

Full access