Search Results

You are looking at 1 - 10 of 27 items for

  • Author or Editor: Lambert B. McCarty x
Clear All Modify Search
Free access

Lambert B. McCarty and Daniel L. Colvin

Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] is a turfgrass species traditionally adapted to low-rainfall areas that may incur unacceptable weed encroachment when grown in higher rainfall areas such as Florida. An experiment was performed to evaluate the tolerance of two new buffalograss cultivars, `Oasis' and `Prairie', to postemergence herbicides commonly used for grass, broadleaf, and sedge weed control. Twenty to 40 days were required for each cultivar to recover from treatment with asulam, MSMA, and sethoxydim (2.24, 2.24, and 0.56 kg-ha-l, respectively). Other herbicides used for postemergence grass weed control (metsulfuron, quinclorac, and diclofop at 0.017, 0.56, and 1.12 kg·ha-1, respectively) did not cause unacceptable buffalograss injury. Herbicides used for postemergence broadleaf weed control, triclopyr, 2,4-D, sulfometuron, dicamba (0.56, 1.12, 0.017, and 0.56 kg·ha-1, respectively), and a three-way combination of 2,4-D + dicamba + mecoprop (1.2 + 0.54 + 0.13 kg·ha-1), caused 20 to 30 days of unacceptable or marginally acceptable turfgrass quality, while 20 days were required for `Prairie' buffalograss to recover from atrazine treatments. `Oasis' buffalograss did not fully recover from 2,4-D or 2,4-D + dicamba + mecoprop through 40 days after treatment. Herbicides used for postemergence sedge control, bentazon and imazaquin, caused slightly reduced, but acceptable, levels of turf quality in both cultivars throughout the experiment. Chemical names used: 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine (atrazine); methyl[(4-aminophenyl)sulfonyl]carhamate (asulam); 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon); 3,6-dichloro-2-methoxybenzoic acid (dicamba); (±)-2-[4-(2,4-dichlorophenoxy)phenoxy]propanoic acid (diclofop); 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-quinolinecarboxylic acid (imazaquin); (±)-2-(4-chloro-2-methylphenoxy)propanoic acid (mecoprop); 2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]amino]sulfonyl]benzoic acid (metsulfuron); monosodium salt of methylarsonic acid (MSMA); 2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one(sethoxydim); 2-[[[[(4,6-dimethylethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]benzoic acid (sulfometuron); [(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid (triclopyr); (2,4-dichlorophenoxyl)acetic acid (2,4-D); 3,7-dichloro-8-quinolinecarboxylic acid (quinclorac).

Free access

B. Todd Bunnell, Lambert B. McCarty and Hoke S. Hill

Creeping bentgrass (Agrostis palustris Huds.) is used on putting greens for its fine-leaf texture, consistent speed, smooth ball roll, and year-round color. In recent years bentgrass use has extended into the warmer climates of the southern United States. Being a C3 plant, bentgrass is not well adapted to extended hot and humid environmental conditions. Subsurface air movement systems are now commercially available that can transport air through the root zone to alter soil conditions and potentially improve bentgrass survival. This research investigated the effects of subsurface air movement on the composition of soil gases, matric potential, temperature, and growth response of a sand-based creeping bentgrass golf green. Treatments included: air movement direction (evacuate, inject, and no air) and duration of air movement (0400-0600 hr, 1000-1800 hr, and 24 hours). Treatment combinations were imposed for 13 days. Subsurface air movement reduced CO2 at the 9-cm depth to values <0.0033 mol·mol-1 when evacuating or injecting air, depending upon duration. Soil matric potentials at a 9-cm depth were decreased by a maximum of 96% when evacuating air for 24-hour duration compared to no-air plots. Soil temperatures at 9 cm were decreased ≈1 to 1.5 °C when injecting air from 1000 to 1800 hr and 24-hour treatments and increased ≈0.75 °C when evacuating air from 1000 to 1800 hr. Subsurface air movement did not improve creeping bentgrass turf quality or rooting. Although not effective in improving the growth response of creeping bentgrass, subsurface air movement may be a useful tool to improve soil gas composition, reduce excess soil moisture, and potentially reduce soil temperature(s) of heat-stressed creeping bentgrass golf greens.

Free access

Lambert B. McCarty, Leon T. Lucas and Joseph M. DiPaola

Spring dead spot (SDS) [Gaeumannomyces graminis (Sacc.) von Arx & D. Olivier var. graminis Walker] is a serious disease of bermudagrass [Cynodon dactylon (L.) Pers.] throughout much of the southern United States and is believed to be at least partially influenced by the previous year's turfgrass management practices. Research was performed to: a) determine the efficacy of selected fungicide control measures; and b) determine the influence of N and K nutrient regimes on the expression of SDS symptoms in Tifway bermudagrass (C. dactylon x C. transvaalensis Burtt-Davy). Averaged over two sites in 2 years, a 72% reduction in SDS followed a fall application of benomyl at 12 kg·ha. Fenarimol applied at three rates (1.5, 2.3, and 3.0 kg·ha) on three fall dates reduced SDS by a combined average of 66%. A single application of propiconazole (2.5 kg·ha) reduced disease by an average of 56%. Application of N (98 kg·ha) in late fall increased SDS 128% in one test location. Application of potassium sulfate (269 kg K/ha) in late fall resulted in an average increase in SDS expression of 89% the following spring over all experiments. Turf managers with severe SDS should minimize heavy late-fall K applications and possibly use benomyl, fenarimol, or propiconazole for disease suppression. Chemical names used: α -(2-chlorophenyl)α -(4-chlorophenyl)-S-pyrimidinemethanol (fenarimol); [methyl 1(butylcarbamoyl)-2-benzimidazolecarbamate] (benomyl); 1-[[2-(2,4-dichlorophenyl)-4propyl-1,3-dioxolan-2-yl]methyl]--1H-1,2,4-triazole (propiconazole).

Free access

Patrick E. McCullough, Haibo Liu and Lambert B. McCarty

Trinexapac-ethyl (TE) is an effective plant growth retardant for hybrid bermudagrass; however, growth responses of various dwarf-type bermudagrass cultivars to TE have not been reported. Two 60-day greenhouse experiments were conducted at the Clemson Greenhouse Research Complex, Clemson, S.C., to evaluate the response of `Champion', `FloraDwarf', `MiniVerde', `MS Supreme', `Tifdwarf', and `TifEagle' bermudagrass with and without TE at 0.0125 kg·ha-1 a.i. per 10 days. From 20 to 60 days after initial treatments, TE enhanced visual quality 9% to 13% for all cultivars. From four samples, TE reduced clippings 63%, 63%, 69%, 62%, 64%, and 46% for `Champion', `FloraDwarf', `MiniVerde', `Tifdwarf', and `TifEagle', respectively. Trinexapac-ethyl enhanced root mass 23% and 27% for `MiniVerde' and `FloraDwarf' bermudagrass, respectively. `Champion', `MS Supreme', `Tifdwarf', and `TifEagle' bermudagrass treated with TE had similar root mass to the untreated respective cultivars. Among untreated cultivars, `FloraDwarf', `MiniVerde', `MS Supreme', and `Tifdwarf' had similar root masses; however compared to these cultivars, `Champion' and `TifEagle' had 33% and 81% less root mass, respectively. Root length was unaffected by TE; however, `Champion' and `TifEagle' averaged 20% and 36% less root length compared to `Tifdwarf' bermudagrass, respectively, while `FloraDwarf', `MiniVerde', and `MS Supreme' had similar root length to `Tifdwarf'. Trinexapac-ethyl safely enhanced turf quality and reduced clipping yield at 0.0125 kg·ha-1 per 10 days without inhibiting root growth of six dwarf-type bermudagrasses. Chemical name used: [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethyl ester] (trinexapac-ethyl).

Free access

Patrick E. McCullough, Haibo Liu and Lambert B. McCarty

Plant growth regulators (PGRs) are commonly used to enhance putting green quality and ball roll distances but their effects with various mowing operations have not been reported. Three experiments were conducted and repeated at Clemson University, Clemson, SC, on an `L-93' creeping bentgrass putting green to evaluate the effects of mowing operations and PGRs on diurnal ball roll distances. The PGRs tested included ethephon at (a.i.) 3.8 kg·ha-1, flurprimidol at (a.i.) 0.28 kg·ha-1, paclobutrazol at (a.i.) 0.28 kg·ha-1, and trinexapac-ethyl at (a.i.) 0.05 kg·ha-1. Mowing operations tested included rolling vs. mowing, morning mowing vs. morning plus afternoon mowing, and single vs. double morning mowing, all with and without PGRs. PGR by mowing operation interactions did not occur in any experiments. Ball roll distances decreased from 12:00 hr to evening observations in all experiments. In Experiment 1, rolling the green without mowing reduced ball roll distance 4% (5 cm) compared to mowing. Turf rolled without mowing in the morning and treated with flurprimidol, paclobutrazol, and trinexapac-ethyl produced similar ball roll at 12:00, 15:00, and 18:00 hr to mowed untreated turf. In Experiment 2, all plots were mowed at 08:00 hr and half of each plot was remowed at 12:30 hr. The second mowing at 12:30 hr enhanced ball roll distances 6% (8 cm) over the day. Turf mowed only at 08:00 and treated with paclobutrazol and trinexapac-ethyl had greater or equal ball roll distances at 12:30, 15:30, and 18:30 hr to untreated turf that had a second mowing at 12:30 hr. Turf receiving ethephon and 08:00 hr mowing had 4% to 12% (4 to 17 cm) shorter ball roll distances throughout the day compared to untreated turf mowed at 8:00 and 08:00+12:30 hr, respectively. In the third experiment, mowing twice in the morning increased ball roll 3% (4 cm) compared to mowing once. Trinexapac-ethyl and paclobutrazol treated turf mowed once in the morning had greater or equal ball roll distances throughout the day to untreated turf mowed twice in the morning. Overall, PGR use may provide putting green ball roll distances similar to or greater than untreated turf despite additional mowing; however, ethephon reduced ball roll distances regardless of mowing operations. Chemical names used: [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethyl ester] (trinexapac-ethyl); {α-(1-methylethyl)-α-[4-(trifluoro-methoxy) phenyl] 5-pyrimidine-methanol} (flurprimidol); (+/-)-(R*,R*)-β-[(4-chlorophenyl) methyl]-α-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol (paclobutrazol); [(2-chloroethyl)phosphonic acid] (ethephon).

Free access

Patrick E. McCullough, Haibo Liu and Lambert B. McCarty

Ethephon is an effective growth retardant for suppressing Poa annua (L.) seedheads in creeping bentgrass putting greens; however, ethylene induction may cause bentgrass leaf chlorosis, reduced rooting, and quality decline. Two greenhouse experiments investigated the effects of nitrogen (N) fertility and ethephon applications on `L-93' creeping bentgrass over 9 weeks. Ethephon was applied at 0, 3.8, and 7.6 kg·ha–1 a.i. per 3 weeks and N was applied at 4 and 8 kg·ha–1·week–1. Ethephon applications linearly reduced bentgrass quality on every weekly observation. Increased N rate to 8 kg·ha–1·week–1 improved turf quality about 10% to 20% and 10% to 30% from ethephon applied at 3.8 and 7.6 kg·ha–1 per 3 weeks, respectively. Increased N rate to 8 kg·ha–1·week–1 enhanced shoot growth 30% but reduced root mass and length 12% and 11%, respectively. After 9 weeks, ethephon reduced root length by about 30% and root mass about 35% at both rates. From nine weekly samples, ethephon reduced dry clipping yield 10% and 16% at 3.8 and 7.6 kg·ha–1 per 3 weeks, respectively. From 2 to 9 weeks after initial treatments, ethephon linearly increased leaf water content. Increasing N fertility effectively reduced bentgrass leaf chlorosis from ethephon; however, repeat applications of ethephon and increased N may restrict bentgrass root growth. Chemical names used: [(2-chloroethyl)phosphonic acid] (ethephon).

Free access

Patrick E. McCullough, Haibo Liu, Lambert B. McCarty and Ted Whitwell

Dwarf bermudagrass morphological characteristics following the use of plant growth regulators have not been reported. The objective of this greenhouse study was to determine short-term effects of seven plant growth regulators on clipping yield, chlorophyll concentration, and root mass of `TifEagle' bermudagrass. Growth regulators tested included ethephon, fenarimol, flurprimidol, maleic hydrazide, mefluidide, paclobutrazol, and trinexapac-ethyl. Two applications of each compound were made over a 6-week period. Root mass was reduced 39% by fenarimol and 43% by flurprimidol, while other PGRs had root mass similar to untreated turf. `TifEagle' bermudagrass treated with paclobutrazol, mefluidide, fenarimol, and flurprimidol averaged 45% less root mass than trinexapac-ethyl-treated turf. Trinexapac-ethyl was the only compound to reduce clippings and enhance turf quality without negative rooting effects. Chemical names used: [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethyl ester] (trinexapac-ethyl); {α-(1-methylethyl)-α-[4-(trifluoro-methoxy) phenyl] 5-pyrimidine-methanol} (flurprimidol); (+/-)-(R*,R*)-β-[(4-chlorophenyl) methyl]-α-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol (paclobutrazol); (N-[2,4-dimethyl-5 [[(trifluoro-methyl)-sulfonyl] amino]phenyl]acetamide) (mefluidide); [1,2-dihydro-3,6-pyridazine-dione] (maleic hydrazide); [(2-chloroethyl)phosphonic acid] (ethephon); and (2-(2-chlorophenyl)-2-(4-chlorophenyl)-5-pyrimidinemethanol) (fenarimol).

Free access

Patrick E. McCullough, Haibo Liu, Lambert B. McCarty and Ted Whitwell

Research was conducted in two studies at the Clemson University Greenhouse Complex, Clemson, S.C., with the objective of evaluating `TifEagle' bermudagrass (Cynodon dactylon × C. transvaalensis) response to paclobutrazol. TifEagle bermudagrass plugs were placed in 40 cm polyvinylchloride containers, with 20.3-cm-diameters and built to U.S. Golf Association specifications with 85 sand: 15 peatmoss (by volume) rootzone mix. Paclobutrazol was applied to separate containers at 0, 0.14, 0.28, and 0.42 kg·ha-1 (a.i.) per 6 weeks. Minor phytotoxicity occurred with 0.14 kg·ha-1 applications, but turf quality was unaffected. Severe bermudagrass phytotoxicity occurred from paclobutrazol at 0.28 and 0.42 kg·ha-1. Total clipping yield from 12 sampling dates was reduced 65%, 84%, and 92% from 0.14, 0.28, and 0.42 kg·ha-1, respectively. Root mass after 12 weeks was reduced 28%, 45%, and 61% for turf treated 0.14, 0.28, and 0.42 kg·ha-1, respectively. Paclobutrazol reduced root length 13%, 19%, and 19% by 0.14, 0.28, and 0.42 kg·ha-1, respectively. Turf discoloration and negative rooting responses advocate caution when using paclobutrazol on `TifEagle' bermudagrass. Chemical names used: (+/-)-(R*,R*)-ß-[(4-chlorophenyl) methyl]-alpha-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol (paclobutrazol).

Free access

Patrick E. McCullough, Ted Whitwell, Lambert B. McCarty and Haibo Liu

Preemergence herbicides are applied to prevent summer annual weed infestations in turf, but safety to dwarf-type bermudagrass golf greens has not been determined for many of these materials. Field experiments tested ‘TifEagle’ bermudagrass response to bensulide at 11.2 kg·ha−1 (a.i.), dithiopyr at 0.56 kg·ha−1 (a.i.), napropamide at 2.2 kg·ha−1 (a.i.), oxadiazon at 2.2 kg·ha−1 (a.i.), oxadiazon plus bensulide at 1.7 + 6.7 kg·ha−1 (a.i.), and pendimethalin at 1.7 kg·ha−1 (a.i.). All herbicides reduced root mass from the nontreated, but only losses incited by oxadiazon plus bensulide were acceptable (less than 20%). Dithiopyr, napropamide, and pendimethalin delayed spring greenup in 2003 and 2004, whereas oxadiazon plus bensulide delayed spring greenup in 2004. In greenhouse experiments, ‘TifEagle’ bermudagrass root mass was reduced 19% to 37%, 30% to 33%, 4% to 26%, 28% to 37%, and 24% to 30% from various rates of bensulide, dithiopyr, napropamide, and pendimethalin, respectively. Oxadiazon and oxadiaxon plus bensulide reduced root mass by only 2% to 15% and 15% to 22%, respectively. In another experiment, oxadiazon plus bensulide at 1.7 + 6.7 kg·ha−1 did not injure shoots or roots of ‘Champion’, ‘FloraDwarf’, ‘MiniVerde’, ‘Tifdwarf’, or ‘TifEagle’ bermudagrass. Overall, dwarf-type bermudagrass golf greens do not appear to tolerate mitotic inhibitor preemergence herbicides, whereas oxadiazon or oxadiazon plus bensulide caused minimal injury.

Free access

Joe E. Toler, Jason K. Higingbottom and Lambert B. McCarty

Centipedegrass [Eremochloa ophiuroides (Munro) Hack.] is widely grown throughout the southeastern United States as a low-maintenance turfgrass; however, limited peer-reviewed research is available on “best” cultural practices for established centipedegrass. This research was conducted to examine the long-term effects of mowing height and fertility regimens providing various rates and application times of soil-applied granular Fe and N on centipedegrass quality and surface coverage. Soil type was a Cecil sandy loam (clayey, kaolinitic, thermic Typic Hapludult) with a pH of 5.5. A mowing height of 3.8 cm was equal to or better than the 1.9 cm mowing height throughout the study. The rate of N fertilization played an important role in achieving optimal turfgrass quality and coverage with the two highest rates (97.6 and 195.2 kg·ha−1 N), generally providing similar results when applied as split applications in May and August and mowed at 3.8 cm. These treatments provided turfgrass quality ratings of 8.3–9.0, turfgrass color ratings of 8.1–8.7, and turfgrass coverage of 94% to 98% over a 3-year period. The addition of soil-applied Fe sulfate at a rate of 24.4 kg·ha−1 Fe was not beneficial to centipedegrass performance or color. Results indicate that the addition of 97.6 kg·ha−1 N, using split-applications in May and August and a mowing height of 3.8 cm for established centipedegrass, should achieve acceptable turfgrass quality and coverage.