Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: L.L. Bruner x
Clear All Modify Search

Clematis socialis Kral, commonly known as the Alabama Leatherflower, is an endangered species with only six known populations in northeast Alabama and northwest Georgia. Cutting propagation of the species will aid in establishing additional self-sustaining populations and provide genetic material for future hybridization and genetic preservation. Such research would also benefit growers, especially native nurseries, who wish to produce this species commercially for its ornamental value. Several experiments were performed to determine the effects of four non-amended substrates on root initiation, root growth, and survival of C. socialis stem cuttings. The four substrates tested included sand, perlite, vermiculite, and a 1 peat (P): 1 pine bark (PB): 1 sand (S) mix (by volume). Some of the best results in the preliminary experiments in 2000 were observed when 2 to 3 node cuttings kept under shade and treated with higher IBA/NAA concentrations were used. In 2004, there was a correlation between root growth and cutting survival and particle size of the substrates. Cuttings rooted in the finer-particle substrates sand and vermiculite had higher cutting survival, root growth, root number, and root quality than those rooted in perlite and the 1 P: 1 PB: 1 S mix. Sand, perlite and vermiculite consistently outperformed the 1 P: 1 PB: 1 S mix which had some of the lowest growth data means. Sand was among the highest performing substrates in all years and it is the most inexpensive and readily available making it the most logical substrate for rooting C. socialis stem cuttings.

Free access

Clematis socialis Kral, also known as the Alabama Leatherflower, is an endangered species with only six known populations in northeast Alabama and northwest Georgia. Cutting propagation of the species would be beneficial for establishing additional self-sustaining populations and providing genetic material for future hybridization. A study conducted in 2000 and 2004 determined the effects of four nonamended substrates on root initiation and growth, as well as survival of C. socialis stem cuttings. Of the four substrates tested, including sand, perlite, vermiculite, and 1:1:1 (by volume) peat (P): pine bark (PB): sand (S), cutting survival was highest in sand in both 2000 and 2004. In 2000, sand also produced the longest roots and highest root quality. Vermiculite produced the longest and most roots and highest root quality in the 2004 study. In 2004, cuttings rooted in fine-particled substrates, such as sand and vermiculite, had higher cutting survival, root growth, root number, and root quality than those rooted in perlite and 1:1:1 (by volume) P:PB:S. The 1:1:1 P:PB:S substrate produced the lowest averages for all data collected in both the 2000 and 2004 studies. Sand was among the two highest performing media in both years, regardless of differences in IBA concentration, misting times, and environmental conditions, making it the overall best substrate for rooting C. socialis stem cuttings. Increasing the concentration of IBA in the rooting solution, providing a cooler environment, and decreasing the number and duration of misting cycles the cuttings received increased cutting survival, root length, root number, and root quality for all four substrates from 2000 to 2004.

Free access