Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: L.E. Jackson x
Clear All Modify Search
Free access

Brian E. Jackson, Amy N. Wright and Jeff L. Sibley

In the southeastern United States, inconsistent pine bark (PB) supplies and overabundance of cotton gin by-products warrant investigation about the feasibility of replacing PB with cotton gin compost (CGC) for container horticultural plant production. Most research on the use of composted organic substrates for horticultural plant production has focused on shoot growth responses, so there is a need to document the effect of these substrates on root growth. In 2004, `Blitz' tomato (Lycopersicon esculentum), `Hot Country' lantana (Lantana camara `Hot Country'), and weeping fig (Ficus benjamina) were placed in Horhizotrons to evaluate root growth in 100% PB and three PB:CGC substrates containing, by volume, 60:40 PB:CGC, 40:60 PB:CGC, and 0:100 PB:CGC. Horhizotrons were placed in a greenhouse, and root growth in all substrates was measured for each cultivar. Physical properties (total porosity, water holding capacity, air space, and bulk density) and chemical properties (electrical conductivity and pH) were determined for all substrates. Physical properties of 100% PB were within recommended guidelines and were either within or above recommended ranges for all PB:CGC substrate blends. Chemical properties of all substrates were within or above recommended guidelines. Root growth of all species in substrates containing CGC was similar to or more enhanced than root growth in 100% PB.

Free access

J.E. Flaherty, B.K. Harbaugh, J.B. Jones, G.C. Somodi and L.E. Jackson

Bacteriophages specific to Xanthomonas campestris pv. pelargonii (Xcp), the causal agent of bacterial blight of geranium, Pelargonium ×hortorum L.H. Bailey, were isolated from soil and sludge samples from Florida, California, Minnesota, and Utah. Sixteen phages were evaluated for their potential to lyse 21 Xcp strains collected from around the world. The Xcp strains varied in their susceptibility to the phage isolates with 4 to 14 phages producing a lytic or highly virulent reaction. A mixture of five h-mutants was developed from phages that exhibited the broadest host-ranges and tested against the same Xcp strains. The h-mutant phage mixture lysed all 21 Xcp strains. Three experiments were designed to determine the efficacy of using a mixture of four h-mutant phages to control the spread of the bacterial blight pathogen on potted and seedling geraniums under greenhouse conditions. Plants surrounding diseased inoculated plants were treated with a phage mixture at 5 × 108 pfu/mL daily, biweekly, or triweekly, or treated with Phyton-27®, at 2.0 mL·L-1 every 10 or 14 days. In potted geraniums, daily foliar sprays of the phage mixture had reduced disease incidence and severity by 50% and 75%, respectively, relative to control plants after 6 weeks. In two plug experiments, the phage mixture applied daily also had reduced disease incidence and severity by 69% and 86%, and 85% and 92%, respectively, when compared with controls after 5 weeks. In all three experiments, disease incidence and severity were less for plants treated daily with phages than for those treated less frequently with phages or with Phyton-27®. Chemical name used: copper sulfate pentahydrate (Phyton-27®).

Free access

J.E. Flaherty, G.C. Somodi, J.B. Jones, B.K. Harbaugh and L.E. Jackson

A mixture of host-range mutant (h-mutant) bacteriophages specific for tomato race 1 (T1) and race 3 (T3) of the bacterial spot pathogen, Xanthomonas campestris pv. vesicatoria (Doidge) Dye was evaluated for biological control of bacterial spot on `Sunbeam' tomato (Lycopersicon esculentum Mill.) transplants and field-grown plants for two seasons (Fall 1997 and Fall 1998). Foliar applications of bacteriophages were compared with similar applications of water (control) and of copper/mancozeb bactericides, the commonly used chemical control strategy for tomato seedling and field production. In 1997, the incidence of bacterial spot on greenhouse-grown seedlings was reduced from 40.5% (control) to 5.5% or 0.9% for bactericide- or bacteriophage-treated plants, respectively. In 1998, the incidence of bacterial spot was 17.4% on control plants vs. 5.5% and 2.7% for bactericide- and bacteriophage-treated plants, respectively, although these differences were not statistically significant at P ≤ 0.05. Applications of bacteriophages to field-grown tomatoes decreased disease severity as measured by the area under the disease progress curve (AUDPC) by 17.5% (1997) and 16.8% (1998) compared with untreated control plants. Preharvest plant vigor ratings, taken twice during each field season, were higher in the bacteriophage-treated plants than in either bactericide-treated plants or nontreated controls except for the early vigor rating in 1998. Use of bacteriophages increased total weight of extra-large fruit 14.9% (1997) and 24.2% (1998) relative to that of nontreated control plants, and 37.8% (1997) and 23.9% (1998) relative to that of plants treated with the chemical bactericides. Chemical names used: manganese, zinc, carboxyethylene bis dithiocarbamate (mancozeb).

Free access

Brian E. Jackson, Joe M. Kemble, Amy N. Wright and Jeff L. Sibley

Tomatoes are the most abundantly produced greenhouse vegetable crop in the United States. The use of compost substrates has increased in recent years for the greenhouse production of many vegetables, bedding plants, and nursery crops. `Blitz' tomatoes were grown during the spring and fall growing seasons in 2004 in six substrate blends of pine bark (PB), a traditional production substrate in the Southeastern U.S., and cotton gin compost (CGC), an agricultural by-product, to assess the potential use of CGC as a viable replacement for PB for the production of greenhouse tomatoes. Treatments ranged from 100% PB to 100% CGC. During both growing seasons, plants grown in substrates containing CGC produced similar total, marketable, and cull yields compared to plants grown in 100% PB. Substrates containing 40% or more CGC had significantly higher EC levels both initially and throughout both growing seasons than did 20% CGC and 100% PB blends. Initial and final pH of all substrates was similar during both studies and remained within recommended ranges for greenhouse tomato production. Water-holding capacity increased as the percent CGC increased in each substrate blend, indicating the need for less irrigation volume for substrates containing CGC compared to the 100% PB control. Results indicate that CGC can be used as an amendment to or replacement for PB in greenhouse tomato production.

Free access

Jeb S. Fields, William C. Fonteno, Brian E. Jackson, Joshua L. Heitman and James S. Owen Jr.

Pine tree substrates (PTSs) may provide growers with sustainable substrate component options. Improved processing of PTS components has provided new materials with little scientific evaluation or understanding of their hydrophysical behavior and properties. Moisture retention characteristics were developed for two PTSs and four traditional greenhouse components: sphagnum peat, coconut coir, perlite, pine bark, shredded-pine-wood (SPW), and pine-wood-chips (PWC). Mixtures of peat containing 10%, 20%, 30%, 40%, and 50% of perlite, SPW, or PWC were also characterized. Hydrophysical properties were measured, allowing for comparison of the PTS components to the more traditional substrate components (peat, coir, perlite, and pine bark). The SPW was constructed to retain water similarly to peat and pine bark, whereas the PWC was made to increase drainage like perlite. Shredded pine wood had higher total porosity and more easily available water than did PWC components. Total porosities of SPW and PWC were similar to pine bark and coir; air space and drainage were higher than peat and coir because of the lower percentage of fine particles in the PTS components. The two PTS components had a greater influence on water drainage and retention dynamics than did perlite when amended with peat as an aggregate. Water release patterns of SPW or PWC components at low tensions were lower than peat and greater than pine bark; drainage was similar to perlite at higher tensions. Equilibrium capacity variable models predicted similar physical properties (and trends) across multiple container sizes for peat mixes amended with perlite, SPW, or PWC. The impact of PWC on drainage and aeration was similar to perlite in all containers, but these effects were greater in smaller containers.