Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: L. Lombardini x
Clear All Modify Search
Authors: and

The recent development of small portable infrared thermometers has made canopy temperature an easily measured characteristc in the field. Our objective was to correlate a reduction of soil water with foliage temperature and to compare it with other indicators of plant stress (Pn, E, gs, leaf expansion, sap flow). During Summer 1998, we evaluated the responses of potted apple rootstocks (cultivars Budagowski 9, M9, and Mark) to soil water deficit. Irrigation was withheld for 7 days, and the canopy temperature (Tc) was measured daily with an infrared camera. Tc was always higher than air temperature (Ta). Tc between control and stress plants began to differentiate from day 3. In Mark, this difference was maintained until the end of the experiment. However, gas exchange in Mark seemed to be less affected by the stress than in the other two cultivars. At day 7, midday stomatal conductance (gs) was 38.0, 32.3, and 72.0 mmol·m–2·s–1 in Budagowski 9, M9, and Mark, respectively (control values varied between 161.6 and 164.3 mmol·m–2·s–1 for all the cultivars). Heat-pulse sapflow sensors installed on Mark indicated that the speed of the xylem sap was affected by the stress from day 4 (19-26 cm/h for the controls vs. 15–21 cm/h for the stressed plants). Specific details on the physiological data will be presented.

Free access

The objective of this study was to evaluate kernels of different pecan (Carya illinoinensis) cultivars for their antioxidant capacity and characterize the nature of the antioxidant compounds. Nuts collected from four pecan cultivars `Cheyenne', `Cape Fear', `Desirable', and `Pawnee' were shelled, chopped and analyzed for their antioxidant capacity (AC), and for their phenolic, tannin, and vitamin C content. AC was measured using one spectrophotometrical [DPPH (2,2-diphenyl-1-picrylhydrazyl)] and one fluorescence method [ORAC (Oxygen Radical Absorbance Capacity)]. Total phenolic and tannin content were determined using spectrophotometrical assays. Finally, ascorbic and dehydroascorbic acid were determined using a high performance liquid chromatograph. Both AC methodologies, DPPH and ORAC, gave similar results with marked differences between cultivars. `Desirable' had the highest antioxidant capacity (47,747 μg TEq/g DW with DPPH method) followed closely by `Cheyenne' (36,192 μg TEq/g DW) and, with smaller amounts, by `Cape Fear' and `Pawnee' (16,540 and 13,705 μg TEq/g DW, respectively). Total phenolic content showed a similar trend but `Pawnee' showed a higher phenolic content than `Cape Fear'. `Cheyenne' had the highest amount of tannins, 9,114 μg/g DW, followed by `Cape Fear', `Pawnee' and `Desirable' with 7,764, 6,043 and 5,508 μg/g DW respectively),. `Cheyenne' had also the highest vitamin C content, up to ≈10-fold greater than `Cape Fear' and `Pawnee', the highest difference within the antioxidants analyzed. There is the need to determine the phenolic profile and degree of polymerization of tannins, their contribution to the AC and how they are affected by horticultural practices in order to better understand the nutraceutical potential of each cultivar.

Free access

An assessment of leaf anatomic traits of pecan [Carya illinoinensis (Wangenh.) C. Koch] cultivars (Pawnee, Mohawk, and Starking Hardy Giant) collected from three locations (Tifton, GA; Chetopa, KS; and Stillwater, OK) was conducted to provide an understanding of patterns of ecogeographical variation within the natural range. Acetate casts of representative leaves were prepared for microscopic characterization of epidermal traits (stomatal density, stomatal index, and epidermal cell density). There were differences among the three pecan cultivars at the same location, but there were no differences in stomatal density within the same cultivar grown at three distinct locations. The stomatal density of ‘Pawnee’ leaves (404 stomata/mm2) was intermediate between that of ‘Mohawk’ (363 stomata/mm2) and ‘Starking Hardy Giant’ (463 stomata/mm2). ‘Pawnee’ had the greatest epidermal cell density (2511 cells/mm2) whereas ‘Starking Hardy Giant’ showed the least (1414 cells/mm2). Within a location, stomatal index differed significantly among cultivars, with ‘Starking Hardy Giant’ having a greater stomatal index than the other two cultivars. There were no differences in stomatal index across locations. ‘Mohawk’ had the greatest trichome density (18.92 trichomes/mm2) whereas ‘Starking Hardy Giant’ had the lowest (9.6 trichomes/mm2). The study suggests that differences in stomatal density and epidermal cell density in pecans are cultivar specific rather than being determined by environmental factors. The stability of certain leaf anatomic characteristics, such as stomatal and epidermal cell density, for pecan cultivars grown at different locations confirms that these traits can be used for screening provenances with desirable leaf anatomic characteristics for breeding and cultivar development.

Free access

Leaf anatomical traits of Mexican and U.S. pecan [Carya illinoinensis (Wangenh.) K. Koch] seedstocks grown in a single location were studied to determine patterns of ecogeographic variation within the natural range. Stomatal density was uniform among open-pollinated seedlings of a common maternal parent with twofold differences in stomatal density separating some seedstocks. There was an inverse relationship between stomatal density and epidermal cell density. Stomatal density and stomatal index of Mexican seedstocks were related to longitude and annual precipitation of origin. Stomatal density increased along the longitudinal gradient toward the east coast of Mexico; seedstocks originating from areas on the east coast of Mexico had greater stomatal density than seedstocks originating from the drier areas on the west coast. Stomatal density and stomatal index did not follow a pattern along latitude or longitude in the U.S. seedstocks. Although isotopic carbon (13C) discrimination did not vary greatly in Mexican seedstocks, the reduction in stomatal density in pecan trees from areas with reduced annual precipitation suggest the presence of an anatomical feature to reduce water losses.

Free access

After an outbreak of blotch leafminer (Cameraria caryaefoliella) on field-grown pecan (Carya illinoinensis) trees in 2010, an experiment was conducted to evaluate the consequences of the injury on carbon assimilation and photosynthetic efficiency, and, in particular, to assess if low-to-moderate injury induces a compensatory increase in photosynthesis. Gas exchange and light-adapted fluorescence were measured on non-injured portions of the leaflet lamina adjacent to the injured area as well as on portions of leaflets that included leafminer injury. Results indicate that damage of the photosynthetic apparatus did not extend beyond the injured areas by leafminers. Furthermore, although a strong relationship between the proportion of leafminer injury and area-based net CO2 assimilation rate of injured leaflet tissue was found, there was no evidence that pecan leaves were able to compensate for leafminer injury by upregulating CO2 assimilation in leaflet tissue that was unaffected.

Free access

Seedlings from 13 open-pollinated families of Taxodium distichum (L.) L.C. Richard from the gulf coast, central and south Texas, and Mexico were grown in a nursery in College Station, Texas. Forty seedlings per family were measured on three dates during the production cycle; 99, 109, and 133 days after sowing in Spring and Summer 2004. A two-step cluster analysis based on height and trunk diameter created 3 clusters of families. Cluster 1 had a mean height of 32 cm and a mean trunk diameter of 3.3 mm. Cluster 2 had a mean height of 33 cm and a mean trunk diameter of 3.4 mm. Cluster 3 had a mean height of 43 cm and a mean trunk diameter of 4.1 mm. Although clusters 1 and 2 are statistically significantly different, practically there is little difference between the two. The families from Mexico and central Texas were all in cluster 1 or 2 and the families collected from the gulf coast were all placed in cluster 3, with the exception of a single family from Biloxi, Miss., which was placed in cluster 1. Analysis of covariance revealed that family membership and days after sowing were both highly significant, as well as an interaction between family and days, for height. Families from Mexico and central and south Texas were 10 to 15 cm shorter than the families from the gulf coast, with the exception of the single family from Biloxi, Miss. Only days and the interaction between family and days were significant for trunk diameter. A pattern similar to the cluster analysis means was seen among the families for trunk diameter in the analysis of covariance.

Free access

Tree transplanting practices influence plant survival, establishment, and subsequent landscape value. However, transplanting practices vary substantially within the horticultural industry. Of particular importance is the location of the root collar relative to soil grade at transplant. The objective of this study was to determine the effects of factorial combinations of planting depths, root collar at grade or 7.6 cm either above or below grade, and soil amendments on container-grown (11 L) Quercus virginiana Mill. Soil treatments included a tilled native soil (heavy clay loam, Zack Series, Zack-urban land complex, fine, montmorillonitic, thermic, udic paleustalfs), native soils amended with 7.6 cm of coarse blasting sand or peat that were then tilled to a depth of 23 cm, or raised beds containing 20 cm of sandy loam soil (Silawa fine sandy loam, siliceous, thermic, ultic haplustalfs). A significant (P ≤ 0.05) block by soil amendment interaction occurred for photosynthetic activity. Incorporation of peat significantly decreased the bulk density of the native soil. Planting depth had no significant effect on photosynthetic activity or stem xylem water potential at 3 months after transplant. Soil water potentials did not statistically differ among treatments.

Free access

Planting depth during container production may influence plant growth, establishment, and subsequent landscape value. A lack of knowledge about the effects of common transplanting practices may lead to suboptimal performance of planted landscape trees. Planting depth, i.e., location of the root collar relative to soil grade, is of particular concern for posttransplant tree growth both when transplanted to larger containers during production and after transplanting into the landscape. It is unknown whether negative effects of poor planting practices are compounded during the production phases and affect subsequent landscape establishment. This study investigated effects of planting depth during two successive phases of container production (10.8 L and 36.6 L) and eventual landscape establishment using lacebark elm (Ulmus parvifolia Jacq.). Tree growth was greater when planted at grade during the initial container (10.8 L) production phase and was reduced when planted 5 cm below grade. In the second container production phase (36.6 L), trees planted above grade had reduced growth compared with trees planted at grade or below grade. For landscape establishment, transplanting at grade to slightly below or above grade produced trees with greater height on average when compared with planting below grade or substantially above grade, whereas there was no effect on trunk diameter. Correlations between initial growth and final growth in the field suggested that substantial deviations of the original root to shoot transition from at-grade planting was more of a factor in initial establishment of lacebark elm than the up-canning practices associated with planting depth during container production.

Free access

The objective of this study was to assess the changes in leaflet zinc (Zn), leaf nutritional state, vegetative and physiological parameters, and yield quality in pecan trees sprayed with different Zn compounds. Eight-year-old ‘Western Schley’ pecan trees grafted to native seedlings were treated with ZnNO3 (100 mg·L−1 Zn), Zn-EDTA (50, 100, and 150 mg·L−1 Zn), and Zn-DTPA (100 mg·L−1 Zn) and compared with the Zn-untreated control. After 3 years of evaluation, the trees with the best appearance were those treated with ZnNO3 (100 mg·L−1 Zn) and Zn-DTPA (100 mg·L−1 Zn), which showed leaf Zn concentration increases of 73% and 69%, respectively, when compared with the controls. The chlorophyll values of the Zn-treated trees reached 46 SPAD units, equivalent to 43 mg·kg−1 dry weight (DW) of chlorophyll compared with values of 22 mg·kg−1 DW in Zn-deficient leaves. On a leaf area basis, chlorophyll value was 37% lower under Zn deficiency conditions than that of Zn-treated trees. Nut quality was unaffected by the Zn treatments. Data suggest that Zn-DTPA and Zn-NO3 are good options to carry out foliar Zn fertilization in pecan trees.

Free access