Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: L. C. Torre x
Clear All Modify Search

Abstract

Root-shoots of red raspberry (Rubus idaeus L.) rooted in auxin solutions in 10 days. Root initiation was markedly influenced by auxin concentration.

Open Access

Citrus Tristeza Closterovirus (CTV) induces mild and/or severe symptoms on Citrus species. It may cause death of trees if the rootstock-scion combination is susceptible. It has been found in other plant/virus combinations that transformation with partial or complete viral genes (e.g., coat protein genes) can confer resistance to the resulting transgenic plants. We previously reported A. tumefaciens mediated transformation and production of two sour orange (C. aurantium L.) plants expressing the coat protein gene of CTV, which was the first report of production of transgenic Citrus using a viral gene. However, in order to properly evaluate resistance, it is necessary to obtain as many transgenic Citrus plants from single transformation events as possible. Therefore, we are currently transforming grapefruit (Citrus paradisi) `Marsh' and `Star Ruby' and sweet orange (C. sinensis) `Valencia' with CTV coat protein genes. These species are susceptible to CTV and more amenable to transformation than sour orange. Epicotyl segments of etiolated seedlings were inoculated with A. tumefaciens strain EHA101 harboring binary plasmid pGA482GG containing the coat protein gene of mild Florida CTV strain T30 (CP-T30) or severe Florida strain T36 (CP-T36). Putatively transformed shoots were regenerated on selection medium containing kanamycin. Regenerated shoots were evaluated with GUS assays; those shoots positively identified by GUS were then evaluated with PCR. We have currently identified 17 `Marsh' grapefruit, 20 `Star Ruby' grapefruit, and seven sweet orange putatively transformed plants.

Free access

Screening for resistance to mixed infections with pepper huasteco virus (PHV) and pepper golden mosaic virus (PepGMV) was carried out on plants representing wild pepper accessions collected in different states of México. One accession collected in Yucatán (BG-3821) corresponded to Capsicum chinense Jacq., and three collected from Michoacán (BG-3818), Tamaulipas (BG-3820), and Sinaloa (BG-3819) were identified as C. annuum L. Forty-eight plants were initially inoculated with a 1:1 mix of PHV and PepGMV DNAs by a biolistic method. Those plants that did not show typical symptoms after the biolistic method, were inoculated by grafting. Half of the plants (24) were highly susceptible, while the other half expressed different degrees of resistance. Of the resistant individuals, eight plants were asymptomatic and viral DNA of both viruses was detected in low levels. Two individuals showed delayed symptoms 34 days after symptom expression in the control plants. This delay was correlated with an increase in PHV DNA levels when plants became symptomatic. The remaining 14 plants showed symptom remission in newly developed leaves at 31 days postinoculation, and this asymptomatic effect was correlated diminished PHV DNA within the plants. Our results suggest that the resistance shown by some individuals to geminivirus mixed infections (PHV and PepGMV) is likely due to constrains in viral movement.

Free access