Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: L. Burgos x
Clear All Modify Search
Authors: and

Laboratory and orchard tests have shown that the apricot (Prunus armeniaca L.) cultivars `Hargrand', `Goldrich', and `Lambertin-1' are cross-incompatible. All three cultivars are from North American breeding programs and have `Perfection' as a common ancestor. In orchard tests, compatible pollinations resulted in 19% to 74% fruit set, while incompatible pollinations resulted in <2% fruit set. Microscopic examination showed that, in incompatible pollinations, pollen tube growth was arrested in the style, most frequently in its third quarter, and that the ovary was never reached. It is proposed that self-incompatibility in apricot is of the gametophytic type, controlled by one S-locus with multiple alleles, and that these three cultivars are S1S2.

Free access
Free access
Authors: , , and

Eight apricot (Prunus armeniaca L.) cultivars were self- and cross-pollinated to determine pollen compatibility. Pollen tube growth in the laboratory and the percentage of fruit set in the orchard were evaluated. The results confirmed that `Moniqui Fino' and `Velázquez Tardío' are self-incompatible and established that `Gitano', `Pepito del Cura', and `Velázquez Fino' are also self-incompatible. No cross-incompatibility was found in the 25 cross-combinations.

Free access

Apricot (Prunus armeniaca L. cv.'Helena') shoots grown on a proliferation medium containing 3% sucrose, 0.4 mg·L–1 benzyladenine (BA), and 0.04 mg·L–1 indolebutyric acid (IBA) and solidified with 0.6% agar were stored at three different temperatures in the dark for up to 24 weeks. All shoots remained viable for 24 weeks when stored at 3 °C, while at 14 °C the percentage of survival decreased quickly after 12 weeks of storage. At 7 °C, percentage of survival started to decline after 18 weeks of storage. Shoots stored at 3 °C had the highest regeneration rates and shoot lengths following transfer to standard proliferation conditions. This temperature also had a beneficial effect on shoot proliferation during the first 12 to 18 weeks of the experiment.

Free access

Heterotrophic bacteria present in recycled greenhouse irrigation water (RIW) were characterized and then evaluated for their effect on Pythium aphanidermatum, P. cryptoirregulare, and P. irregulare. Nutrient agar (NA) and R2A agar were used to isolate copiotrophic and oligotrophic bacteria. Bacterial isolates recovered from RIW were categorized according to whether they inhibited Pythium growth, attached to hyphae, or enhanced Pythium growth in the three Pythium species used. Three bacterial isolates were selected to determine whether their in vitro interactions with Pythium aphanidermatum, the most pathogenic of the three species used, influenced disease development in the greenhouse. An isolate of Sphingobium sp. that inhibited Pythium, Pseudomonas sp. that attached to hyphae, and Cupriavidus sp. that enhanced the growth of P. aphanidermatum in vitro were used in greenhouse experiments to examine their effects on disease development in geranium (Pelargonium ×hortorum ‘White Orbit’) grown in pasteurized potting mix in ebb and flood irrigation systems. Disease progress curves evaluating the effect of each bacterium indicate that they did not suppress or enhance disease development (P = 0.05). Thus, the effects that the bacterial isolates had in vitro differed from their effects under greenhouse conditions.

Free access