Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: L. Berkett x
Clear All Modify Search
Free access

L.P. Berkett, M.E. Garcia, J. Clements and G. Neff

Apple scab, a fungal disease caused by Venturia inaequalis, is considered the most important disease of apple worldwide. The disease can be devastating, causing reduction in yield or making the apples unfit for the market. Currently, the production of marketable fruit from scab susceptible cultivars depends on the repeated applications of fungicides. Scab-resistant apple cultivars, which are genetically immune to apple scab, can offer a biological alternative to fungicide use. `Liberty,' was bred for immunity to apple scab; however, it is not immune to other apple diseases and pests. Research has been conducted during a 3-year project (1996–1998) to determine whether reduced fungicide programs adversely affect overall tree vigor, productivity, and fruit quality. Data collected include tree vigor (TCSA and time of leaf abscission), tree productivity (YE), and fruit quality (fruit firmness and disorders during storage). Results indicate no significant differences between the two treatments (reduced fungicide and no fungicide application) in most of the parameters measured. Based on fruit that were harvested and graded to commercial standards, the estimated gross monetary value of the crop does not show difference between treatments. These results could translate into an economic advantage for growers when one factors in the savings in fungicide purchases. In addition, there are also health and environmental advantages to reduced fungicide usage.

Free access

Morgan L. Cromwell, Lorraine P. Berkett, Heather M. Darby and Takamaru Ashikaga

A major challenge in organic apple production in humid production regions is the available fungicide options for apple scab [Venturia inaequalis (Cooke) Wint.] management. The standard sulfur/lime sulfur fungicide program can be injurious to the applicator, the apple ecosystem, and the apple tree itself. The objectives of this study were to compare the efficacy of three potential alternative fungicides [potassium bicarbonate (PB), neem oil (NO), and Bacillus subtilis (Bs)] with a standard organic sulfur/lime sulfur (SLS) fungicide program and a non-treated control (NTC) for management of apple scab and to evaluate potential non-target impacts on pest and beneficial arthropod populations. The five treatments were applied to ‘Empire’ trees arranged in a completely randomized design with five single-tree replications at the University of Vermont Horticultural Research Center in South Burlington, VT. Fungicides were applied with a handgun to drip using maximum label rates. Applications began on 26 Apr. 2007 and 23 Apr. 2008 and continued on approximately a weekly schedule through the end of June and then every 2 weeks through 23 July 2007 and 17 July 2008, respectively. The standard SLS treatment resulted in the best scab control in both years. The NO treatment reduced foliar and fruit scab compared with the NTC and the other alternatives at the end of the 2008 growing season and had insecticidal activity. However, both the SLS and NO treatments had disadvantages, including phytotoxic burning on the fruit and/or significantly more russeting on the fruit at harvest. In each year of the study, one or more of the alternative treatments, particularly Bs, resulted in higher insect damage than the non-fungicide-treated control. This research showed that PB, Bs, and NO do not offer advantages over the standard SLS fungicide program in organic apple production and in some cases offer distinct disadvantages in terms of non-target impacts. Chemical names used: potassium bicarbonate (Armicarb “O”), Bacillus subtilis (Serenade MAX), neem oil (Trilogy), sulfur (Microthiol Sulfur)/lime sulfur (Miller Lime Sulfur)

Full access

S.S. Miller, R.W. McNew, B.H. Barritt, L. Berkett, S.K. Brown, J.A. Cline, J.M. Clements, W.P. Cowgill, R.M. Crassweller, M.E. Garcia, D.W. Greene, G.M. Greene, C.R. Hampson, I. Merwin, D.D. Miller, R.E. Moran, C.R. Rom, T.R. Roper, J.R. Schupp and E. Stover

Cultivar and planting site are two factors that often receive minimal attention, but can have a significant impact on the quality of apple (Malus ×domestica) produced. A regional project, NE-183 The Multidisciplinary Evaluation of New Apple Cultivars, was initiated in 1995 to systematically evaluate 20 newer apple cultivars on Malling.9 (M.9) rootstock across 19 sites in North America. This paper describes the effect of cultivar and site on fruit quality and sensory attributes at a number of the planting sites for the 1998 through 2000 growing seasons. Fruit quality attributes measured included fruit weight, length: diameter ratio, soluble solids concentration (SSC), titratable acidity (TA), flesh firmness, red overcolor, and russet. Fruit sensory characteristics rated included crispness, sweetness, and juiciness, based on a unipolar intensity scale (where 1 = least and 5 = most), and acidity, flavor, attractiveness, and desirability based on a bipolar hedonic scale (where 1 = dislike and 5 = like extremely). All fruit quality and sensory variables measured were affected by cultivar. The two-way interaction of cultivar and planting site was significant for all response variables except SSC, TA, russet, crispness, and sweetness ratings. The SSC: TA ratio was strongly correlated with sweetness and acidity sensory rating, but was weakly correlated with flavor rating. The results demonstrate that no one cultivar is ideally suited for all planting sites and no planting site is ideal for maximizing the quality of all apple cultivars.