Search Results
The use of water-soluble chemical fertilizers for years under drip irrigation conditions results in soil compaction, fertility decline, and fruit quality decrease in arid areas. Currently, little research has been reported regarding the effects of increasing organic fertilizer and reducing drip chemical fertilizer on the growth of grape plants under different conditions in arid areas. In this study, five different treatments were conducted. Compared with no fertilizer for 3 consecutive years (CK) and single fertilizer for 3 consecutive years (T0), organic fertilizer plus 1 year of reducing drip chemical fertilizer (T1), organic fertilizer plus 2 years of reducing drip chemical fertilizer (T2), and organic fertilizer plus 3 years of reducing drip chemical fertilizer (T3) improved the soil pH, electrical conductivity (EC) values, and soil organic matter content to different degrees during early growth stages (15 days after anthesis) and mature stages (75 days after anthesis). The available N, P, and K contents in the T1 and T2 treatments increased significantly. With the T2 treatment, the longitudinal and transverse diameters of the ‘Summer Black’ grapes were the largest during the two fruit expansion periods. The anthocyanin content of grape peel with the T2 treatment was 22.0% higher than that with the T0 treatment. The soluble solids, sugar–acid ratio, various sugar contents, vitamin C, and total phenol of the fruit increased significantly with the T2 treatment, indicating that the T2 treatment was best for promoting grape growth and fruit quality and that the T3 treatment was the second best.
Aeration through subsurface drip irrigation (SDI) can promote plant growth and increase crop yield; however, more research is focused on annual crops, and there are few studies on perennial crops. We have studied a new type of SDI (SDI with tanks) suitable for cultivation and production of perennial fruit trees and photovoltaic aeration device in greenhouse. The results showed that aeration irrigation promoted the growth of new leaves, fine roots, and new branches of grape, regulated O2/CO2 content in rhizosphere soil, and accelerated air exchange in rhizosphere soil. This study showed that aeration irrigation did not change the structure of bacteria and fungi but significantly increased the abundance of aerobic bacteria, such as Nitrospira and Cytophagia. Moreover, it promoted the increase of Pseudomonas and Aspergillus related to phosphate solubilization, that of Bacillus related to potassium solubilization, and that of Fusarium related to organic matter (OM) decomposition. This study shows that aeration irrigation through SDI with tanks can promote grape growth, which may be related to the ability of aeration irrigation to change the gas composition of rhizosphere soil, optimize the structure of rhizosphere soil microorganism.
In this study, the effects of light-emitting diode (LED) panels with different illumination schedules and mounted above butterhead lettuce (Lactuca sativa var. capitata) seedlings on lettuce growth and photosynthesis were examined, and the performance of the vertical and horizontal movable system on energy savings was evaluated. The illumination schedules used were fixed LED [F-LED (four LED panels illuminated the area below)] and movable LED [M-LED (two LED panels moved left and right once per day to illuminate the same area as F-LED)] at distances of 10 and 30 cm above the seedlings. The plant yields were uniform in all LED treatments. The highest light utilization efficiencies and lowest electricity consumption were found for the treatments with irradiation from a shorter distance above the seedlings. The true leaf numbers and ascorbic acid concentrations were the highest in the M-LED and F-LED treatments at a distance above the seedlings of 10 cm, while the leaf lengths and sucrose concentrations in these groups were significantly lower than those in the 30-cm treatment. These results indicate that illumination with M-LED can halve the initial light source input while maintaining yield and that sustained illumination from a shorter distance above the seedlings is the main factor in electricity savings.