Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Kun Li x
  • All content x
Clear All Modify Search
Free access

Xiao-Xian Li and Zhe-Kun Zhou

Northwestern Yunnan is situated in the southern part of the Hengduan Mountains, which is a complex and varied natural environment. Consequently, this region supports a great diversity of endemic plants. Using field investigation in combination with analysis of relevant literature and available data, this paper presents a regional ethnobotanical study of this area. Results indicated that northwestern Yunnan has an abundance of wild ornamental plants: this study identified 262 endemic species (belonging to 64 genera and 28 families) with potential ornamental value. The distinguishing features of these wild plants, their characteristics and habitats are analyzed; the ornamental potential of most plants stems from their wildflowers, but some species also have ornamental fruits and foliage. Among the endemic genera, Pedicularis and Rhododendron have particularly high numbers of ornamental wild species, while Aconitum, Gentiana, Corydalis, Silene, Delphinium, Cremanthodium, and Saussurea also contain significant numbers of wild ornamental species. It is suggested that cultivation of these species may be beneficial, both commercially and to help conserve endangered endemic plant species.

Full access

Kun Li, Qi-Chang Yang, Yu-Xin Tong, and Ruifeng Cheng

In this study, the effects of light-emitting diode (LED) panels with different illumination schedules and mounted above butterhead lettuce (Lactuca sativa var. capitata) seedlings on lettuce growth and photosynthesis were examined, and the performance of the vertical and horizontal movable system on energy savings was evaluated. The illumination schedules used were fixed LED [F-LED (four LED panels illuminated the area below)] and movable LED [M-LED (two LED panels moved left and right once per day to illuminate the same area as F-LED)] at distances of 10 and 30 cm above the seedlings. The plant yields were uniform in all LED treatments. The highest light utilization efficiencies and lowest electricity consumption were found for the treatments with irradiation from a shorter distance above the seedlings. The true leaf numbers and ascorbic acid concentrations were the highest in the M-LED and F-LED treatments at a distance above the seedlings of 10 cm, while the leaf lengths and sucrose concentrations in these groups were significantly lower than those in the 30-cm treatment. These results indicate that illumination with M-LED can halve the initial light source input while maintaining yield and that sustained illumination from a shorter distance above the seedlings is the main factor in electricity savings.

Free access

Lin Zhou, Qianqian Shi, Yan Wang, Kui Li, Baoqiang Zheng, and Kun Miao

Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) is a sensitive and widely used technique for gene expression analysis that depends on stability of the reference genes used for data normalization. Tree peony (Paeonia suffruticosa), known as one of the most famous traditional ornamental plants in China, is very popular in both domestic and international markets for its showy and colorful flowers. To date, no systematic studies on reference genes have been performed in tree peony with different flower colors. In this study, we evaluated the expression stability of 12 candidate reference genes in different tissues and five flower developmental stages of tree peony with six different colors by three algorithms: geNorm, NormFinder, and BestKeeper. The results showed that protein phosphatase 2A (PP2A), ubiquitin protein ligase (UPL), and ubiquitin (UBQ) were the most stable genes across all samples. Helicase, alpha-tubulin (TUA), and eukaryotic translation initiation factor 5A (EIF5A) also exhibited high expression stability in different tissues, in samples with different colors, and at different flower developmental stages. According to the geNorm analysis, the combination of two most stable reference genes was optimal for normalization in all tested sample sets in this study. To further validate the suitability of the reference genes identified in this study, the expression patterns of two putative homologs of chalcone synthase gene (PsCHS1) and chalcone isomerase gene (PsCHI1) were studied at different developmental stages of white flowers. The results provide information for transcriptional analyses in future studies of gene expression on tree peony flower development and pigmentation.

Free access

Xiaoxu Yang, Yinshan Guo, Junchi Zhu, Zaozhu Niu, Guangli Shi, Zhendong Liu, Kun Li, and Xiuwu Guo

Monoterpenoid metabolism and aroma compounds are influenced by genetic characteristics. Linalool, α-terpineol, nerol, and geraniol are primary monoterpenoids that have previously been studied in grape (Vitis vinifera) berries. Previous studies were restricted by the lack of relevant studies investigating population structure and the regulatory mechanism underlying monoterpenoid synthesis. In this study, a total of 1133 alleles were amplified, with each locus having on average 6.06 alleles. We also assessed the genetic variability among the genotypes based on 187 microsatellite primer pairs amplified in 96 grape genotypes. The results of the phylogenetic tree analysis showed that the grapevine accessions grouped into five genetic clusters that largely coincided with the recognized species classification and the result of principal coordinates analysis (PCoA). The molecular characterization of these accessions provides insight into genetic diversity, population structure, and linkage disequilibrium (LD) in grapevines. A total of 51 quantitative trait loci (QTLs) were detected that were significantly associated with linalool, α-terpineol, nerol, and geraniol. We found that Deoxyxylulose phosphate synthase (DXS) was located in the region UDV060 on linkage group (LG) 5, whereas Farnesyl diphosphate synthase (FPPS) and Hydroxymethylbutenyl diphosphate reductase (HDR) were located in the VLG19-I-1 and VLG3-A-1 regions, respectively. These novel QTLs will potentially assist in the screening of aroma compounds in grapevines.

Full access

Hailin Shen, Zhendong Liu, Ke Yan, Liren Zou, Jinghui Wen, Yinshan Guo, Kun Li, and Xiuwu Guo

Amur grape (Vitis amurensis) is a dioecious species. To elucidate the time of and reason for pistil abortion in male amur grape from the perspective of cytology, we observed the sections of pistil of a male line during its development using optical and transmission electron microscopes. The abnormity in the morphology of nucellar cell and the development of various organelles appeared before the abnormity of functional megaspore mitosis. Programmed cell death (PCD) of the nucellar cells might be an important reason for mitosis disorder, leading to the abortion of pistil in male flower. However, the abortion can be eliminated by forchlorfenuron treatment, resulting in the recovery of functional pistil in male amur grape. This study provides cytological information on the gender conversion mechanism in male amur grape, which can promote gender determination studies in Vitis species.

Free access

Xue Li, Chen Zang, Hang Ge, Jing Zhang, Donald Grierson, Xue-ren Yin, and Kun-song Chen

Loquat (Eriobotrya japonica) is a model fruit for investigating flesh lignification during storage and response to chilling injury. However, the investigations of enzymes and coding genes and loquat fruit lignification under low-temperature storage are still limited. Here, the activity and transcript levels of up-stream enzymes of the phenylpropanoid pathway, including l-phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate:coenzyme A ligase (4CL), were investigated. The results indicated that activity of these enzymes was positively correlated with loquat fruit lignification and suppression of these increases by heat treatment (HT) and low-temperature conditioning (LTC) significantly alleviated loquat fruit lignification. Coding genes for these enzymes were subsequently isolated based on information from an RNA-seq database and expression of Ej4CL1 was found to be the most responsive to low temperature and inhibition by HT and LTC treatment, whereas the other genes were less responsive to these treatments. Furthermore, function of Ej4CL1 was analyzed by transient overexpression in tobacco leaves, where it stimulated lignin accumulation. Ej4CL1 may be a key candidate that involved in CI-related loquat fruit lignification.

Free access

Sheng-Xi Liao, Xian-Jie Mi, Ai-Zhong Liu, Kun Li, Zhen-Yin Yang, and Bo Tian

The Chinese Incense-cedar (Calocedrus macrolepis Kruz), an important wood and ornamental tree, is native to southwest China and also in northern Vietnam, Laos, Thailand, and Myanmar. As a result of ecological degradation in these areas, Chinese Incense-cedar was considered a vulnerable species according to the criteria of the International Union for the Conservation of Nature and Natural Resources. In the current report, we developed and characterized 13 novel microsatellite markers for this species using the protocol of fast isolation by amplified fragment length polymorphism of sequences containing repeats. Polymorphism of each locus was assessed in 36 individuals from nine geographical populations. The number of alleles per locus ranged from two to nine with an average of 6.08. The observed and expected heterozygosities ranged from 0.0000 to 1.0000 and from 0.1549 to 0.8912 with averages of 0.6688 and 0.6815, respectively. Four of the 13 loci were significantly deviated from Hardy-Weinberg expectations. No significant linkage disequilibrium was detected. These polymorphic microsatellite markers would be useful tools for investigating genetic population structure and diversity to establish conservation strategy for this interesting and vulnerable species.

Free access

Long-na Li, Songjun Zeng, Feng Zheng, Zhi-lin Chen, Kun-lin Wu, Jian-xia Zhang, and June Duan

Ten polymorphic microsatellite loci were isolated and characterized from an enriched genomic library of Paphiopedilum concolor (Batem.) Pfitzer. The number of alleles per microsatellite locus ranged from three to 11 with an average of 6.4 in a sample of 30 individuals from three populations. The observed and expected heterozygosity ranged from 0.200 to 0.800 and from 0.544 to 0.827, respectively. These microsatellites can be used as tools to investigate the genetic structure of P. concolor populations and relationship patterns with closely related taxa.

Full access

Xiao-Juan Wei, Jinlin Ma, Kun Wang, Xiao-Jing Liang, Jin-Xuan Lan, Yue-Juan Li, Kai-Xiang Li, and Haiying Liang

Camellia chrysantha flowers are in great market demand as a result of their high ornamental and medicinal values. To induce early flowering in 4-year-old juvenile C. chrysantha seedlings, three levels of paclobutrazol (PBZ) concentration (100, 200, and 300 ppm) were applied to the roots. PBZ is a triazole-type cytochrome P450 inhibitor that was found successful in inducing flowering in juvenile C. chrysantha grafted plants in a prior report. The current study shows that all three PBZ concentrations were equally effective in induction of floral buds, resulting in an average of 20 floral buds per treated plant. In comparison, none of the untreated plants flowered. Although the induced flowers were smaller than the ones from mature trees, PBZ treatment did not affect C. chrysantha flowers’ medical values, because there was no significant change in the content of pharmacologically active compounds (polysaccharide, polyphenols, flavonoids, and saponins). None of the PBZ treatments had a negative effect on the current year’s growth in height and basal diameter, photosynthesis, and levels of water-soluble sugars and nutrients [phosphorus (P), nitrogen (N), potassium (K), and carbon (C)]. It is concluded that PBZ is an effective flowering inducer for juvenile C. chrysantha plants. It was also found that PBZ-treated plants experienced defoliation, and there existed a strong correlation between severity of defoliation and PBZ concentration. This might be attributed by the stress induced by PBZ, as demonstrated by the increased activities of some of the stress-related enzymes [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD)], and the level of malondialdehyde (MAD). Considering that severe defoliation can cause stunted or malformed plants and reduce aesthetic value, 100 ppm is the optimal PBZ concentration for flowering induction in C. chrysantha seedlings.