Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Koji Numaguchi x
Clear All Modify Search
Restricted access

Yuto Kitamura, Hisayo Yamane, Akira Yukimori, Hiroyoshi Shimo, Koji Numaguchi and Ryutaro Tao

Flower bud development and the timing of blooming are mainly affected by genotype-dependent chilling requirements (CRs) during endodormancy and subsequent heat requirements (HRs) during ecodormancy. However, little information is available regarding the responses of flower buds to temperatures during endodormancy and ecodormancy in japanese apricot. We exposed japanese apricot ‘Nanko’ trees to various temperatures to estimate the CRs and HRs using development index (DVI) models specific for the endodormant (DVIendo) and ecodormant (DVIeco) stages. These models were based on the experimentally determined development rate (DVR). The DVRendo value was calculated as the reciprocal of the chilling time required to break endodormancy. The relationship between the DVRendo value and temperature was estimated using a three-dimensional curve. Our results indicated that 5–6 °C was the most effective temperature for breaking endodormancy in ‘Nanko’ flower buds. Additionally, exposure to −3 °C negatively affected endodormancy release, whereas 15 °C had no effect. We also determined that the DVReco values for temperatures between 5 and 20 °C were the reciprocal values of the time required for blooming after endodormancy release. The values outside this range were estimated using linear functions. The DVI was defined as the sum of the DVR values ranging from 0 to 1. Models for predicting the blooming date were constructed using the functions of sequentially combined DVIendo and DVIeco models. The accuracy of each model was assessed by comparing the predicted and actual blooming dates. The prediction of the model in which DVIeco = 1 corresponded to a 40% blooming level and DVIeco = 0 was set to DVIendo = 0.5 had the lowest root mean square error (RMSE) value (i.e., 3.11) for trees in commercial orchards exposed to different climates. Our results suggest that the developed model may have practical applications.