Search Results

You are looking at 1 - 10 of 37 items for

  • Author or Editor: Kimberly A. Williams x
Clear All Modify Search

Most soilless container root media have limited ability to retain nutrients. Zeolites are minerals of substantial cation exchange capacity that can be precharged with K, and possibly PO4, and used as a component of soilless media as a slow-release nutrient source. A zeolite clinoptilolite (Cp) was charged with K and PO4 at two concentrations and combined at 20% of the mix with sphagnum peat (60%) and perlite (20%) to evaluate its use as the sole source of these nutrients during production of Dendranthema ×grandiflorum (Ramat.) Kitamura `Sunny Mandalay.' Phosphate, K, Na, and pH were determined on unaltered bulk root medium solutions collected over the course of production, and foliar analyses were determined on tissue collected at the middle and end of the crop. All leachate was collected and analyzed to allow for the creation of K and PO4 budgets. Plants that relied on precharged Cp at the low and high rates to meet their K needs and received a N/P/-K fertilizer had similar dry mass and tissue K concentrations as the control plants that received a complete fertilizer. The use of precharged Cp at the low rate reduced K losses through leaching to 23% of the amount lost from control plants receiving water-soluble fertilizer (WSF). Plants that relied on precharged Cp for their PO4 had a lower dry mass and tissue P levels than those of the complete control treatment. However, PO4 concentrations in the root medium solution were above acceptable levels during the first month of production and should be considered when developing a fertilizer application strategy using Cp precharged with PO4.

Free access

This decision case presents the issues a grower would face when deciding where to place and how to orient a high tunnel structure on a specific farm site. It provides a tool to teach site planning concepts on a small scale that are easily transferable to issues addressed when planning for construction of all sizes and types of protected-environment structures. In this case, the owner of Full Moon Farm must decide the placement of her high tunnels on a given farm site. Factors to consider include wind, snow, and ice loads as well as structural integrity, labor efficiency, and optimizing light levels. Ultimately, no one solution meets all recommended criteria, so the grower must prioritize the importance of various factors to come to a decision. This case study is intended for use in upper-level undergraduate horticulture courses, and although the principles are broadly applicable to site planning across geographic regions, it is most appropriate for climates above lat. 35°N. In particular, it may prove useful in courses such as greenhouse management and production courses for vegetables, cut flowers, and small fruits, where students assume the role of grower/farmer in the site planning process. This case study is supported by a website version with digital images, digital video, and maps that can be used both inside and outside of the classroom; all are downloadable from the website http://www.hightunnels.org/planningcasestudy.htm. The teaching notes present an unorthodox solution to the Full Moon Farm site planning dilemma.

Full access

Seven organic materials including 1) the bacterium Brevibacterium lactofermentum (Okumura et al.) in a nonviable state, 2) a mixture of two bacteria, Bacillus licheniformis (Weigmann) and Bacillus subtilis (Ehrenberg), plus the fungus Aspergillus niger (van Tieghem) in a nonviable state, 3) an activated microbial sludge from waste-water treatment, 4) sludge from a poultry manure methane generator, 5) unsteamed bonemeal, 6) aged pine needles, and 7) poultry feathers were evaluated to determine their pattern and term of N release and the possibility of using them as an integral part of root media releasing N at a steady, low rate over 10 to 12 weeks for production of Dendranthema × grandiflorum (Ramat.) Kitamura `Sunny Mandalay'. These were compared to the inorganic slow-release fertilizer micro Osmocote (17N-3.9P-10.8K) and a weekly liquid fertilizer control. All organic sources released N most rapidly during the first 2 weeks, followed by a decline, which ended at 6 to 7 weeks. Brevibacterium lactofermentum, bonemeal, and micro Osmocote treatments resulted in about equal growth, which was similar to growth of a weekly liquid fertilizer control for 9 weeks in the first and for 12 weeks in the second experiment. The period of N release could not be extended through increased application rate of source due to the high initial release rate. It was not possible to lower source application rates to achieve an effective, low soil solution concentration due to the large variation in release rate over time. Efficiency of N use varied among plants grown in media treated with various microorganismal sources and was highest in those treated with B. lactofermentum. Nitrogen release from ground poultry feathers was inadequate, and additions of the viable hydrolyzing bacterium B. licheniformis to feathers failed to increase soil solution N levels. Attempts to retard mineralization of B. lactofermentum by cross-linking proteins contained within the bacterium by means of heat treatment at 116C vs. 82C failed. While anaerobic poultry manure sludge proved to be an inefficient source of N, it provided large amounts of P. Organic sources released primarily ammoniacal N, which raised the medium pH by as much as one unit, necessitating the use of less limestone in the medium formulation.

Free access

In commercial interior green walls, plant trimming and replacement necessitated by stem elongation under low interior light levels is labor intensive and costly. Antigibberellin plant growth regulators (PGRs) may slow stem elongation and thus reduce maintenance costs in this environment. In Expt. 1, two PGRs were applied as foliar spray or drench to three spiderwort selections [two of zebra plant (Tradescantia zebrina) and one of inch plant (Tradescantia fluminensis)] immediately before installation in a green wall, each at three rates: ancymidol (ANC) foliar spray at 25, 100, and 200 mg·L−1; paclobutrazol (PBZ) foliar spray at 20, 80, and 160 mg·L−1; and PBZ drench at 1, 4, and 8 mg·L−1, along with an untreated control. In Expt. 2, 80 mg·L−1 PBZ foliar spray, 1 mg·L−1 PBZ applied via subirrigation four times, and the combination of these two treatments, was evaluated on ‘Burgundy’ zebra plant. In both experiments, plants were placed in a vertical modular tray interior green wall. Change in total stem and specific internode length were measured every 14 days after installation for 3 months to calculate growth per month. Antigibberellin application slowed internode elongation of spiderwort selections during the first month after installation. Antigibberellins were more effective in zebra plant at reducing overall stem growth rate and less so on inch plant. Across the three spiderwort selections, 25 mg·L−1 foliar spray of ANC resulted in no difference in growth rate when compared with the control, although 100 to 200 mg·L−1 foliar spray was effective. Based on the results of both experiments, moderate and high rates of PBZ, applied both as a foliar spray and drench, resulted in similar reduction in stem elongation. PBZ applied as 20 to 80 mg·L−1 foliar spray, 4 mg·L−1 drench before installation in the wall, or a combination of an 80 mg·L−1 PBZ pre-installation foliar spray and recurring 1 mg·L−1 via subirrigation (four times) were effective at growth suppression of spiderworts for at least 3 months. Even rates of PBZ of 160 mg·L−1 foliar spray or 8 mg·L−1 drench did not show phytotoxicity in treated plants and could be considered for use. We recommend a pre-installation application of 80 mg·L−1 foliar spray or 4 mg·L−1 drench for controlling stem growth across spiderwort selections. Application of antigibberellin PGRs to plants before installation in green walls slows stem growth and can contribute to reduced maintenance costs.

Open Access

Soilless container media have almost no capacity to retain PO4 or K. The nutrient retention of two calcined clays, attapulgite and arcillite, and brick chips, precharged with PO4 and K, was investigated. These could serve as an alternative slow-release fertilizer when incorporated into a soilless medium as a component of the mix. Sorption curves were developed at 25 °C for attapulgite of two particle sizes (0.8 to 1.6 mm and 1.6 to 3.2 mm), arcillite (1.1 to 3.2 mm), screened pieces of brick (1.0 to 3.6 mm), and a medium of 7 sphagnum peat: 3 perlite (v/v) using solutions of KH2PO4 (P at 0 to 20,000 mg.L-1). Curves indicated that PO4 and K sorption were similar for both particle sizes of attapulgite, so only the larger size [1.6 to 3.2 mm (8 to 16 mesh)] was used in greenhouse studies. Materials were evaluated in greenhouse studies by growing 'Sunny Mandalay' chrysanthemum [Dendranthema ×grandiflora Kitam. (syn. Chrysanthemum morifolium Ramat.)]. The precharged materials were tested at 10%, 20%, and 30% by volume of a peat: perlite root medium. Phosphate, K, and pH were determined on unaltered medium solutions collected throughout the cropping cycle and foliar analyses were determined on tissue collected at midcrop and end of the crop. Data indicated that precharged calcined clays retained and released PO4, and to some degree K, over time. Precharged clays did not provide K at levels which met plant needs during the latter half of the cropping cycle, but it was released and used at appreciable levels during the first month of crop production. Growth of plants receiving PO4 solely from precharged attapulgite and arcillite at 20% of the medium volume was not significantly different from that of a commercial control when the leaching fraction was maintained at 0.2. However, release of PO4 from the brick chips was not enough to match plant demand. Phosphate lost through leaching from the precharged clays was reduced by about two-thirds compared to control plants fertilized with P at 46.5 mg.L-1 from water-soluble fertilizer at each watering.

Free access

Chat rooms and their use in everyday life are becoming increasingly common, and the technology may be a useful tool to link students with experts of a given subject material and each other. In our shared course Plant Nutrition and Nutrient Management, we experimented with using a chat room to link students with experts in the field of plant nutrition. Our main goal was to enhance the learning experience of the students by providing them with access to national and international plant nutrition researchers. Web CT was used to create and conduct the chat rooms and a chat etiquette evolved to prevent crosstalk and control the flow of the discussions. Positive outcomes of the chat room use included exposure of students to the technology and beneficial interaction between students and experts. Negative aspects of chat room use included the time involved to coordinate the overall effort and train experts to use the technology; the slow pace of some chats; effective grading; and the superficial coverage of some topics. We are developing modifications for future sessions to allow subjects to be explored in more depth and to improve networking between students and experts.

Full access

Hydrogen peroxide (H2O2) is a well-known oxidizing agent often used as a remedy by consumers to treat algae and root decay from presumed root disease on interior plants, as well as to encourage root growth and health. To characterize the phytotoxic effects and define the safe concentration threshold for H2O2 use on ‘Vivaldi’ hybrid phalaenopsis orchid (hybrid Phalaenopsis), root systems were dipped for 3 minutes in 0%, 3%, 6%, or 12% H2O2 one time and observed in greenhouse conditions for the following 27 days. Root systems of each plant were assessed over time for percent visible root damage; ratings of root health on a scale of 1 to 5 points, with 5 points indicating “very healthy”; and final fresh and dry weights. To determine when symptoms manifested above the root zone, foliage and flower damage was evaluated over time by assessing percent visible foliage damage, ratings of foliage health, percent foliar wilt, flower/bud count, and final foliage and flower fresh and dry weights. Over the evaluation period, the root health rating of the ‘Vivaldi’ hybrid phalaenopsis orchids treated with 12% H2O2 decreased from 5 to 1.13, whereas those treated with 3% H2O2 only decreased from 5 to 4.13. H2O2 concentrations of 6% and 12% damaged root health permanently, whereas the 3% H2O2 concentration only caused minor damage to overall root health. However, algae were not killed at the 3% rate. Neither foliage nor flowers were seriously affected during the 3 weeks after application, but foliage wilt did result in the 6% and 12% treatments by week 4. As H2O2 concentration increased, fresh weights decreased in roots and leaves. Although a single 3% H2O2 root dip did not result in severe symptoms of phytotoxicity, the treatment’s long-term plant health effects are unknown. Because the 3% H2O2 root dip caused minor plant health setbacks and failed to subdue algae populations in the root zone, consumers should be wary of using H2O2 to improve orchid (Orchidaceae) root health and should instead focus on altering care and watering practices.

Open Access

Nutrient solution with a molar ratio of 10 N: 1 P: 3 K was applied in scheduled intervals at rates of 0.5, 1, 4, or 20 mm N (NO3 + NH4) to Dendranthema ×grandiflorum (Ramat.) Kitamura `Sunny Mandalay' plants seven (7/day) or 14 times/day (14/day). These plants were compared to a 20 mm N control in which nutrient solution was applied when the soil moisture tension reached 30 kPa. Plants with 7/day had significant quadratic relationships for height, width, and dry weight, with the lowest responses at the low nutrient concentration. With 14/day, height and dry weight did not differ, although width did increase linearly with nutrient solution concentration. However, linear regression slopes for all three variables were much lower with 1Vday than with 7/day. At midcrop in both experiments, significant regression curves indicated that the lower concentrations of nutrient solution resulted in lower tissue N and K levels; however, slopes of the linear regressions were lower with 14/day than with 7/day. With 7/day, the water content (percentage) of plants in the schedule-fertilized treatments was higher in plants receiving higher nutrient concentrations, as indicated by the significant linear and quadratic regression curves. With 14/day, the water content was linearly related to solution nutrient concentration, but with a lower slope than with 7/day. These three trends indicate that steady-state nutrition was more closely achieved in a commercial-style substrate with 14/day applications of nutrient solution. These results suggest that plant growth that meets commercial expectations can be achieved at lower soil solution nutrient concentrations than currently applied.

Free access

A model for the creation of shared synchronous courses between universities has been developed based on our experiences during the development and delivery of an upper-level undergraduate/graduate course in Plant Nutrition and Nutrient Management offered by Kansas State Univ. and the Univ. of Nebraska–Lincoln. The course was conducted during the Spring 1999 semester using two-way compressed video so that instructors and students at both sites could see and hear each other in live time. Our model is set up as a flow-chart and currently has 10 steps that include areas such as “Identifying the Need,” “University Must-Do's,” “Distance Class Technology Requirements,” and “Advertising the Course.” Each step details procedures to follow, offers ideas and suggestions, and includes examples taken from our course. Also included is information about web site development and chat room use. The model is easily adapted for use with distance technologies similar to two-way compressed video such as Internet 2. An electronic version of the model can be accessed at http://www.oznet.ksu.edu/dp_hfrr/Floriculture.

Free access

A series of experiments were conducted to determine the ranges of irrigation frequency and N and P fertilization regimes that produce ivy geranium (Pelargonium peltatum L.) plants of optimum commercial quality. Two cultivars, `Sybil Holmes' and `Amethyst', were grown. Data collected included fresh and dry weights, ratings, leaf area, height, width, ratings, and nutrient tissue content. Individual pots were weighed daily and irrigated when weight of pots dropped by 15%, 30%, 45%, or 60% of container capacity (CC). Leaf water potential was measured using a pressure chamber. At both mid and end of crop, plants irrigated when pot weight dropped by 30% of CC were under least water stress (e.g., water potential of –7.0 to –4.7 MPa). Irrigation frequencies at 15%, 45%, or 60% of CC had similar water potentials (e.g., –9.9 to –9.1 MPa). At 15%, a plausible explanation of the stress is that oxygen was limiting in the root zone due to water-logging; at 45% and 60%, water was the limiting factor. Single factor experiments with N at five concentrations ranging from 2 to 32 mm and P at five concentrations ranging from 0.08 to 2.56 mm were conducted. Quadratic equations were fit to curves of growth responses plotted against concentration of N or P applied. As an example of results, N fertilizer rates of 16 and 32 mm for `Amethyst' resulted in similar, commercially acceptable dry weights (37g), but different N tissue concentrations of 3.4% and 3.9% respectively. For `Sybil Holmes', N fertilizer rates of 10 and 26 mm resulted in similar dry weights (21g) but different tissue concentrations of 2.8% and 3.4%, respectively.

Free access