Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Kimberly A. Pickens x
Poinsettia, Euphorbia pulcherrima, is an important holiday symbol and is the number one flowering potted plant in the United States. The technique of chromosome doubling has been utilized to increase size of flowers, stems, and leaves of many species, and has been used in poinsettia breeding to obtain new cultivars. Application of colchicine or oryzalin to in vitro tissues may be used to enlarge the inflorescences and brackets and reduce the height of `Winter Rose'™ poinsettias, reduce the likelihood of chimeric tetraploids, and provide a rapid means for producing many tetraploid plants. The purpose of this research was to evaluate the effect of colchicine and oryzalin on callus and adventitious shoot formation of `Winter Rose'™ poinsettia with in vitro grown leaf tissues and its potential for tetraploid induction. In vitro grown leaf midvein sections were placed on various media supplemented with either colchicine or oryzalin at various concentrations for 1–4 days. Colchicine was least damaging to leaf tissues at concentrations of 0.25 or 250.4 μm. A large amount of callus, as well as adventitious shoots, were produced. Regenerated shoots were found to be diploid, determined by flow cytometry. On media with oryzalin (28.9–144 μm), leaf tissues produced callus, but not adventitious shoots. Calluses produced on oryzalin-containing media were tested using the flow cytometer and were found to be diploid.
The mitotic inhibitors, colchicine and oryzalin, were evaluated for their effects on callus, adventitious shoot formation, and tetraploid induction of Euphorbia pulchurrima `Winter Rose'. In vitro grown leaf sections were placed on various media supplemented with either colchicine or oryzalin at various concentrations for 1 to 4 days. Colchicine was less damaging to leaf tissues than oryzalin. On various colchicine-containing media, prolific calluses were produced and adventitious shoot formation was observed. Regenerated shoots were found to be diploid as determined by flow cytometry. On media supplemented with oryzalin (28.9 μm to 144 μm), leaf tissues produced callus but failed to form adventitious shoots. Samples of calluses produced on oryzalin-containing media were subject to analysis using flow cytometry and were found to be diploid. These results suggest that the colchicine is less toxic on poinsettia tissues and shoot induction than oryzalin. Additional experiments are needed to establish a protocol for in vitro induction of poinsettia tetraploid with colchicine and oryzalin.
Tillandsia eizii is an epiphytic bromeliad that due to over-collection, habitat destruction, and physiological constraints has declined to near threatened status. This species exhibits high mortality in the wild, and seed are characterized by low percentages of germination. As a means to conserve this species, in vitro culture protocols were developed to enhance seed germination and seedling growth. A sterilization protocol using 70% ethanol for 2 minutes followed by 2.6% NaOCl for 40 minutes disinfested seed and promoted seedling growth. Sucrose incorporated into the culture medium had no effect on germination or growth, while NAA inhibited growth, but not germination. Cultures maintained under a 16-hour photoperiod at 22 °C exhibited greater growth than those grown at 30 °C. Seed that germinated in the dark remained etiolated and failed to develop even after transfer to light conditions. Plants grown in vitro were successfully acclimatized and transferred to the greenhouse. Over 86% survival and rapid growth were obtained with either an all-pine-bark medium, or a mixture of 2 redwood bark: 2 fir bark: 2 potting mix: 1 perlite. This demonstrated that in vitro culture of seed may be used to rapidly produce large numbers of T. eizii, and thus can be used for the conservation and reintroduction of this species.
Many bromeliad species indigenous to the rain forests of Central and South America are threatened because of over-collection and habitat destruction. Studies were conducted to develop propagation protocols for Tillandsia eizii, a rare ornamental bromeliad of ceremonial significance to the Highland Maya communities in Chiapas, Mexico. We anticipate using in vitro propagation for the conservation of this species with the potential of utilizing bromeliads as an alternative and sustainable forest resource. Protocols were developed for the sterilization and germination of axenic seed. Seedling growth in vitro was assessed and outplanting studies were conducted. Media were evaluated to promote adventitious bud production in experiments using the plant growth regulators naphthaleneacetic acid and benzylaminopurine. Pulse time and duration, as well as the stage of seed development, had a marked effect on bud production. The effects of various potting media on plant growth and survival were assessed. A pure pine bark medium elicited over 95 percent survival. Plants exhibited a “tank-like” morphology characteristic of plants in the wild.