Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Kilsun Yoo x
Clear All Modify Search

This experiment was conducted to determine the effects of deficit irrigation and growing season on fruit quality, carotenoid content and yield of red-, orange-, and yellow-fleshed diploid and triploid watermelon. Irrigation rates were 1.0 evapotranspiration (ET) and 0.5 ET. Diploid cultivars were Summer Flavor 710 (red), Tendersweet (orange), and Summer Gold (yellow). Triploid cultivars were Summer Sweet 5244 (red), Sunshine (orange), and Amarillo (yellow). Four-week old containerized transplants were planted in the field at TAES-Uvalde on 27 Mar. and 21 May 2003. Deficit irrigation imposed after plants were fully established reduced the individual fruit weight and size in the early planting. Soluble solids content (SSC) and firmness was not affected by irrigation rate in both plantings. SSC varied across cultivars and increased with maturity, particularly for the triploid cultivar Amarillo. In general, triploids were firmer than diploid cultivars. Total carotenoid content was not affected by irrigation during early planting. Diploid and triploid red-fleshed watermelon cultivars had significantly higher carotenoid content than orange- and yellow-fleshed cultivars. The major carotenoid was lycopene (more than 65%), followed by prolycopene (20%) and B-carotene (7%).

Free access

The Texas Agricultural Experiment Station/Texas A&M University announces the release of two new open-pollinated cultivars of long chile. The first, `TAM Ben Villalon,'(TBV) is a long green chile/Anaheim type, while the second, `TAM Valley Hot,' (TVH) is a large cayenne type. Both cultivars have complex pedigrees involving TAES potyvirus resistant germplasm developed by Ben Villalon. Consequently, they exhibit resistance to some strains of tobacco etch virus when mechanically inoculated. In addition, TBV exhibits resistance to several strains of pepper mottle virus. These new cultivars out-yielded their comparable commercial cultivars, `Sonora,' and `Mesilla', when grown with drip irrigation at Weslaco and Uvalde, Texas. TBV yielded 16,632 kg/ha of green pods, compared to 14,228 kg/ha for `Sonora.' Both cultivars had similar capsaicin concentrations of 30–40 ppm on a fresh-weight basis. TBV pods are significantly heavier than those of `Sonora' due to thicker flesh. It should be useful for the green chile processing and fresh market industries. TBV may also be dried at the red stage to produce chile powder, which is very similar in quality to that of `NM 6-4.' TVH pods are not significantly different from `Mesilla' for size or weight, but contain significantly more capsaicin (670 vs. 320 ppm) when grown at Weslaco. TVH should be well-suited to the cayenne mash industry for hot sauce production due to its high heat level. Both cultivars will be distributed through commercial seed companies after receiving approval for Plant Variety Protection Patents.

Free access

Anthocyanin, one of the flavonoids, is a primary determinant of red color in onions. Inheritance studies indicate that a single gene determines the color difference between yellow and red onions. In order to establish which gene might be responsible for this color difference, full-length cDNAs of five structural genes: chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and flavonol synthase (FLS) were cloned using degenerate PCR and RACE (Rapid Amplification of cDNA Ends). RT-PCR was carried out for these five genes to examine differential expression between yellow and red colored bulbs. Accumulation of the DFR gene transcript only occurred in red onions. In F3 populations which originated from the cross between yellow and red parents, DFR transcript was detected only in red F3 lines, not in yellow F3 lines. To design molecular markers for selection of yellow and red DFR alleles, the DFR gene was sequenced from genomic DNA isolated from both types of onions. The genomic DNA sequence revealed the DFR gene consists of six exons and five introns. A PCR-RFLP marker was designed based on 2% polymorphic nucleotide sequence of the DFR gene between yellow and red onions. The co-segregation of markers and red color were observed in F2 segregating populations, supporting the conclusion that color difference in red and yellow onions is likely to be due to the lack of an active DFR gene.

Free access

Agricultural communities in the semiarid regions of the world are constantly being affected by water scarcity, increased regulations restricting water use, strong competition for irrigation water with the urban sector, and severe drought periods. Conversely, the consumer demand for high-quality and nutritious foods is increasing rapidly. A 2-year field study evaluated growth, yield, and bulb quality in response to precision planting density and deficit irrigation of onion (Allium cepa L.) in southwest Texas. Seeds of short-day sweet onion cv. Texas Grano 1015Y were planted in the field on 11 Nov. 2007 and 30 Oct. 2008 at two planting densities (PDs), 397,000 (standard) and 484,000 (high) seeds/ha. Three irrigation rates using growth stage-specific crop coefficients and subsurface drip were imposed after plants were fully established, 100%, 75%, and 50% crop evapotranspiration rates (ETc). Total rainfall plus irrigation received for each irrigation rate were 594, 501, and 413 mm in 2008 and 662, 574, and 486 mm in 2009. In both seasons, there were consistent trends in growth, yield, and quality parameters. Leaf fresh weight was unaffected by PD but was reduced by deficit irrigation at 50% ETc. Although increasing planting density reduced the average bulb size by 12%, it increased the number of marketable bulbs by 21% to 33% and marketable yield by 7% to 14%. In contrast, deficit irrigation showed a trend to reduce both the number of bulbs and bulb size with yield reductions of 8% to 13% at 75% ETc and 19% to 27% at 50% ETc. Neither planting density nor deficit irrigation rate had a significant effect on soluble solids content, pungency, or quercetin contents. These results suggest that growers of short-day onions in semiarid regions could adjust PDs to target high-value bulb sizes. Implementing water-conserving practices (deficit irrigation at 75% ETc rate) would result in a decrease of high-value bulb grades and modest losses in yield but not flavor or nutritional components.

Free access

Sucrose, fructose, total sugars and soluble solids are major factors in determining mature melon fruit sweetness. Bulked segregant analysis was utilized to detect RAPD markers associated with QTL for sucrose, total sugars and soluble solids in an F2 population from the ananas melon cross of Deltex (high sugars) × TGR1551 (low sugars). Sucrose, glucose, fructose and total sugar data were obtained from 108 F2 plants by means of HPLC. Clear separations for sucrose, total sugars and soluble solids between Deltex and TGR1551 were observed, whereas slight differences for glucose and fructose were found. Continuous distributions for sucrose, total sugars and soluble solids were observed in the F2 population indicating quantitative inheritance for the sweetness traits. A significant negative correlation was observed between sucrose and glucose (r = -25) or fructose (r = -0.31). A significant positive correlation was noted between sucrose and total sugars (r = 0.80) or soluble solids (r = 0.64). Three low and high DNA bulk pairs for sucrose, total sugars and soluble solids were developed. A total of 360 primers were used to simultaneously screen between the low and high bulks, and between Deltex and TGR1551. Sixty-eight RAPD markers were polymorphic for the low and high bulks. Of the 68 markers, 24 were found to be significantly associated with sucrose, total sugars or soluble solids on the basis of single-factor ANOVA. Marker OM15.550 was consistently associated with QTL affecting sucrose, glucose, fructose, total sugars and soluble solids, and accounted for 7% to 25% of the phenotypic variation for the traits. These markers associated with the sugar synthesis QTL could be useful to transfer these genes into a low sugar cultivar to enhance the fruit sweetness.

Free access

Onions suffer from severe inbreeding depression, which has inhibited the development of homozygous inbred lines in breeding programs. The creation of doubled haploid (DH) lines in onion provides a unique opportunity to evaluate the utility of such lines as parents in a breeding program. For this purpose, two diallele cross experiments were conducted. The first consisted of a six-parent diallele cross using six DH lines developed at Texas A&M University. The second, a four-parent diallele cross performed with two DH lines and two inbred lines from the breeding program. Bulbs from the various crosses were evaluated for diameter, height, centers/bulb, ring thickness, number of rings/bulb, bulb weight, soluble solids content, and pungency. For some traits, general combining ability (GCA) effects explained most of the variation. However, for other traits, specific combining ability (SCA) effects predominated. For all traits, GCA and SCA were always larger than the reciprocal effects (divided into maternal and nonmaternal components). The GCA and SCA effects show an inverse correlation between the number of centers/bulb and ring thickness.

Free access