Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Kevin Rue x
Clear All Modify Search
Authors: and

Saline and alkaline conditions often coexist in nature. Unlike salinity that causes osmotic and ionic stresses, alkalinity reflects the impact of high pH on plant growth and development. In this research, seven turfgrass species, tall fescue (Festuca arundinacea Schreb.), kentucky bluegrass (Poa pratensis L.), creeping bentgrass (Agrostis stolonifera L.), perennial ryegrass (Lolium perenne L.), zoysiagrass (Zoysia japonica Steud.), bermudagrass [Cynodon dactylon var. dactylon (L.) Pers.], and alkaligrass [Puccinellia distans (Jacq.) Parl.], were germinated under 10 saline–alkaline conditions [two salinity concentrations (25 and 50 mm) × five alkalinity levels (pH = 7.2, 8.4, 9.1, 10.0, 10.8)] in a controlled environment. Seed germination was evaluated based on final germination percentage and daily germination rate. Alkaligrass and kentucky bluegrass showed the highest and lowest germination under saline conditions, respectively. Limited variations in germination were observed in other species, except bermudagrass, which showed a low germination rate at 50 mm salinity. Alkalinity did not cause a significant effect on seed germination of tested turfgrass species.

Free access
Authors: and

Exogenous application of glycinebetaine (GB), an osmoprotectant, increases tolerance to stresses including salinity in various plants. Information on turfgrass, however, is limited. In this study, GB was used to prime turfgrass seeds to enhance salinity tolerance during germination and seedling growth stage when plants are more sensitive to stresses. Unprimed and primed (50, 100, 150, or 200 mm solution of GB or distilled water) seeds of perennial ryegrass (Lolium perenne L.) (PR), tall fescue (Festuca arundinacea Schreb.) (TF), creeping bentgrass (Agrostis palustris Huds.) (CB), and kentucky bluegrass (Poa pratensis L.) (KB) were germinated in solutions of distilled water, mannitol (causing osmotic stress only), or NaCl (causing both osmotic and ionic stresses). Their osmotic potential (ψS) and salinity level were -0.1 MPa and 0.1 dS·m−1 (no stress), –1.0 MPa and 0.1 dS·m−1 (moderate osmotic stress), and –1.0 MPa and 14.6 dS·m−1 (moderate osmotic and ionic stresses), respectively. Seeds primed with GB showed a higher germination rate (11.0% to 13.9% increase) and seedling growth (19.3% to 20.7% increase) in mannitol or NaCl solution than in distilled water. Different turf species showed different responses to osmotic and ionic stresses. No differences in germination and seedling growth of PR, TF, and KB were observed between mannitol and NaCl treatments, indicating that osmotic stress appeared to more critical than ionic stress under saline conditions. For CB, the seed germination rate and seedling growth were lower (19.3% to 44.2% reduction) in NaCl than in mannitol, showing an accumulative effect of both osmotic and ionic stresses under saline conditions.

Free access
Authors: , , and

Glycinebetaine (GB) seed priming enhances stress tolerance in various plants during the germination and seedling growth stage; however, information regarding turfgrass is limited. In this study, GB at 5 to 50 mm was used to prime seeds of six turfgrass species to evaluate the potential of GB priming in enhancing tolerance to drought, salinity, and sub-optimal temperature during germination. Stress tolerance was determined as relative final germination percentage (FGP) and daily germination percentage (DGP), expressed as percentage of germination under stress conditions compared with the control treatment (i.e., unprimed seeds germinated under non-stress condition) for each species. Daily germination percentage was more sensitive to stress than FGP. Perennial ryegrass (Lolium perenne L.) showed high tolerance to drought, salinity, and chilling temperatures (5 and 10 °C below optimal germination temperature) followed by tall fescue (Festuca arundinacea Schreb.) and creeping bentgrass (Agrostis palustris L.), whereas kentucky bluegrass (Poa pratensis L.), bermudagrass [Cynodon dactylon var. dactylon (L.) Pers.], and zoysiagrass (Zoysia japonica Steud.) were stress-sensitive. Kentucky bluegrass and bermudagrass showed higher germination at 10 mm GB under temperature stress and drought and temperature stresses, respectively; however, other grasses showed limited responses to seed priming. Our results showed that the efficacy of GB priming is plant-, GB concentration-, and stressor-dependent.

Free access
Authors: , , and

Drought is the most important abiotic stress in crop production including turfgrass management. Using drought tolerant plants can help minimize stress damage. In this study, 23 commercially available cultivars of creeping bentgrass (Agrostis stolonifera) were evaluated for their responses to drought stress that was induced by polyethylene glycol (PEG) 6000 in a hydroponic system during the seed germination and seedling growth stage. In such a system, water potential was adjusted to 0.0 (the control), −0.3, and −0.6 MPa to mimic the drought condition. The absolute water content (AWC), shoot dry weight (SDW), root dry weight (RDW), longest root length (LRL), specific root length (SRL), and root-to-shoot dry weight ratio (RSR) in the plants grown for 4 weeks in the treatment were determined. Results showed that SDW and LRL were unaffected by drought; however, RDW and RSR increased, whereas SRL and AWC were reduced under drought. Among the 23 creeping bentgrass cultivars evaluated, Independence and Crystal Bluelinks had a higher turfgrass performance index (TPI), which represented the number of times a cultivar ranked in the top statistical group across all parameters. The results suggest that ‘Independence’ and ‘Crystal Bluelinks’ may be more adapted to drought than the other cultivars at the seedling stage.

Full access
Authors: , , and

Salinity tolerance of five buffalograss [Buchloe dactyloides (Nutt.) Englem.] cultivars (Texoka, Cody, Bison, Sharp's Improved II, and Bowie) and three blue grama [Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths] ecotypes (‘Lovington’, ‘Hachita’, and ‘Bad River’) was determined during in vitro seed germination and vegetative growth in a hydroponic system. Seeds were germinated on 0.6% agar medium supplemented with NaCl at 0, 5, 10, 15, and 20 g·L−1. Salinity reduced the final germination rate (FGR) and daily germination rate (DGR). Similarly, shoot dry weight (SDW), longest root length (LRL), and percentage of green tissue (PGT) of mature grasses declined with increasing salinity levels (NaCl = 0, 2.5, 5, 7.5, and 10 g·L−1). However, root dry weight (RDW) was not significantly affected by salinity. Blue grama exhibited a lower reduction in FGR and DGR than buffalograss at salinity levels lower than 10 g·L−1. Germination of all buffalograss cultivars and ‘Hachita’ blue grama was inhibited at salinity levels of 15 and 20 g·L−1 NaCl. However, buffalograss was more salt-tolerant than blue grama at the vegetative growth stage. Variations of salinity tolerance were observed within buffalograss cultivars and blue grama ecotypes, especially during the seed germination stage. Overall, buffalograss appeared to be salt-sensitive during germination but moderately salt-tolerant at the mature stage. However, blue grama was more salt-tolerant at the germination stage than the mature stage. Noticeable differences in salinity tolerance were observed between different germplasms. Therefore, salt tolerance of buffalograss and blue grama may be improved through turfgrass breeding efforts.

Free access
Authors: , , and

Salinity tolerance of 12 turfgrasses in four groups, creeping bentgrass (Agrostis stolonifera L.), fescues (Festuca spp.), kentucky bluegrass (Poa pratesis L.), and alkaligrass [Puccinellia distans (Jacq.) Parl.], was evaluated using three germination methods. Seeds were germinated on 1% agar medium, on germination paper, or in a hydroponic system under salinity levels of 0, 5, 10, 15, or 20 g·L−1 NaCl. Germination rate and seedling growth of each grass were determined. Salinity reduced the final germination rate (FGR), daily germination rate (DGR), and seedling leaf area (LA) in all tests. On agar medium, no significant difference in salinity tolerance was observed among the four turf groups; however, ‘Turf Blue’ kentucky bluegrass with a corn starch-based coating (coated ‘Turf Blue’) showed a significant higher salinity tolerance than the uncoated one. Using germination paper, creeping bentgrass required the highest salinity level to cause 50% reduction in FGR followed by alkaligrass, fescues, and kentucky bluegrass. Kentucky bluegrass required the lowest salinity level (9.5 g·L−1) to reduce DGR by 50%. With the hydroponic system, alkaligrass required a salinity level of 26.3 g·L−1 to reduce FGR by 50%, the highest among the four groups. Alkaligrass showed again the highest salinity tolerance with an average of 12.7 g·L−1 needed to reduce LA by 50%. Among the grasses, coated ‘Turf Blue’ kentucky bluegrass, ‘Declaration’ creeping bentgrass, and ‘Fults’ alkaligrass showed the highest salinity tolerance when evaluated on agar medium, on germination paper, or in the hydroponic system, respectively. The present study determined the salinity tolerance of 12 turfgrasses at seed germination and early seedling growth stages and showed that the germination method was a factor affecting the evaluation result and it should be considered in a seed germination test of turfgrass for salinity tolerance.

Free access