Search Results
You are looking at 1 - 7 of 7 items for
- Author or Editor: Kent M. Eskridge x
Breeders need powerful and simply understood statistical methods when analyzing disease reaction data. However, many disease reaction experiments result in data which do not adhere to the classical analysis of variance (ANOVA) assumptions of normality, homogeneity variance and a correctly specified model. Nonparametric statistical methods which require fewer assumptions than classical ANOVA, are applied to data from several disease reaction experiments. It is concluded that nonparametric methods are easily understood, can be productively applied to plant disease experiments and many times result in improved chances for detecting differences between treatments.
Severity of rust (Uromyces appendiculatus) and yield of dry edible beans (Phaseolus vulgaris L.) were recorded for 9 years in west-central Nebraska in fungicidal efficacy trials. A weighted analysis of covariance was used to estimate yield loss due to rust. The model fit the data well (R2 =0.94), and the slope over all years had a 19 kg.ha−1 decrease in yield for each 1% increase in severity of rust. Yield response within years occurred only through reduction of rust for most fungicide treatments.
Abstract
Common blight in beans (Phaseolus vulgaris L.), incited by Xanthomonas campestris pv. phaseoli (Smith) Dye, is a serious seedborne disease in various parts of the world. We tried to detect possible differences in seed infection and transmission of bacteria in selected bean cultivars/lines. Dry seeds, flower buds (24 to 36 hr before anthesis), small pods (2 to 3 days old), and green seeds of individual plants of Bac-6, ‘Venezuela 44% ‘Pompadour Checà’ dry beans, and of dry seed of Great Northern (GN) ‘Tara’ were examined for possible internal infection after inoculating the seeds, seedlings, and plants with common blight bacterium at various sites. Inoculation of the pedicels of the flower buds and small pods resulted in transmission of the bacteria through the vascular tissue of the pod to the seeds, causing internal infection without any external symptoms shown either by the pods or seeds. Bac-6 was resistant to seed infection, and ‘Venezuela 44’ was most susceptible, followed by ‘Pompadour Checà’ and GN ‘Tara’. Planting infected seeds did not result in a systemic transmission of the bacteria in the vascular tissue of the plants to the seeds. Infected leaves were likely to be the main source for the external infection of pods, which could lead to internal and/or external seed infection. Breeding for resistance to seed infection and transmission of bacteria should aid the control of this disease. A useful technique for assessing internal infection of seeds with the bacteria was developed.
Four bell pepper (Capsicum annuum L.) cultivars were evaluated for yield (total weight of marketable fruit) performance over 41 environments as combinations of 3 years, three planting dates, and seven locations across North Carolina, South Carolina, and Georgia. Cultural practices, including trickle irrigation and double rows planted on black-plastic-covered beds, were uniform across all environments, except for fertilization, which was adjusted at each location based on soil tests. Comparing production over 3 years between the mountain location and the Coastal Plain location in North Carolina, yields were lower on the Coastal Plain. Spring plantings provided higher yields than summer plantings at both locations. Yield increases were obtained from hybrid cultivars over that of the open-pollinated (OP) standard [`Keystone Resistant Giant #3' (KRG#3)] in the summer planting in the mountains compared to the Tidewater Coastal Plain. Across the three-state region, hybrid cultivar yields were higher than those of the OP cultivar for the second spring planting date in 1986 and 1987. Although the hybrid yields were higher than that of the OP standard, the hybrid `Skipper' yielded less than the other hybrids (`Gator Belle' and `Hybelle'). `Gator Belle' generally out-yielded `Hybelle' at all locations, except in Fletcher, N.C. This difference may be related to the relative sensitivity of these two cultivars to temperature extremes, rather than soil or geographic factors, because there was a tendency for `Hybelle' yields to exceed `Gator Belle' in the earliest planting date. Based on the reliability index, the chance of outperforming KRG#3 (the standard) was 85% for `Hybelle', 80% for `Gator Belle', but only 67% for `Skipper'.
Hybridization and selection has been one of the methods used to generate turfgrass cultivars in buffalograss improvement. Three half-sib populations were developed by crossing three buffalograss female genotypes, NE 3296, NE 2768, and NE 2769, with NE 2871, a male genotype, to 1) investigate the pattern of genetic variability generated for turfgrass characteristics through hybridization; 2) assess the effect of parental change on the level of genetic variability generated in a buffalograss diploid population; and 3) predict the performance of a progeny generated from two heterozygous parents for turfgrass performance. The four parents and 20 random F1 progeny selected from each population were established in 2006 at the John Seaton Anderson Turfgrass Research Facility located near Mead, NE. A randomized complete block design (RCBD) was used with the progeny nested in the crosses. A visual rating scale of 1–9 was used to evaluate the population. Mean population lateral spread, genetic color, density, and turfgrass quality from early summer to fall ranged from 3.5 to 4.5, 7.1 to 7.9, 6.9 to 8.1, and 5.2 and 6.8, respectively. There were significant differences among the crosses and the parents for all the traits studied except quality in June and August. The progeny nested within crosses differed for turfgrass genetic color and quality. Best linear unbiased prediction (BLUP) indicated a high improvement potential for turfgrass lateral spread and spring density in NE 2768 × NE 2871 and for turfgrass genetic color in NE 3296 × NE 2871. From these findings, it can be concluded that hybridization breeding is a worthwhile approach for generating and identifying transgressive segregants for specific buffalograss traits.
Nontimber forest products (food, herbal medicinals, and woody floral and handicraft products) produced in forest, agroforestry, and horticultural systems can be important sources of income to landowners. White-tailed deer (Odocoileus virginianus) can reduce the quality, quantity, and profitability of forest products by browsing twigs and rubbing stems, resulting in direct and indirect losses to production enterprises. We evaluated deer damage (frequency and intensity of browsing and rubbing) sustained by 26 species of trees and shrubs, the relationships among morphological features of trees and shrubs to damage levels, and the economic impacts of deer damage on the production of nontimber forest products. Levels of browsing were high (frequency >93% and intensity >50%) in most species of trees and shrubs, with the highest intensity (>60%) occurring in chinese chestnut (Castanea mollisima) and dogwood (Cornus spp.), and the lowest (<20%) in ginkgo (Ginkgo biloba), curly willow (Salix matsudana), ‘Scarlet Curls’ curly willow, smooth sumac (Rhus glabra), and pussy willow (Salix caprea). Species of trees or shrubs with one or a few stout stems unprotected by dense branching [e.g., american elderberry (Sambucus canadensis), smooth sumac, and curly willow] sustained the most damage by rubbing. Trees and shrubs with many small diameter stems or with dense tangled branching [e.g. redozier dogwood (Cornus sericea), forsythia (Forsythia suspensa), ‘Flame’ willow (Salix alba), and ‘Streamco’ basket willow (Salix purpurea)] were damaged the least by rubbing. Annual economic costs of deer damage to producers of nontimber forest products can range from $26/acre for pussy willow to $1595/acre for curly willow.