Search Results
It is commonly believed within the citrus industry that handling, waxing, and storage of navel oranges may have undesirable effects on flavor. However, the effect of each potential influencing factor under commercial conditions is not completely understood. The purpose of this study was to systematically investigate these potential influences on navel orange flavor. Navel oranges were harvested on two separate dates, using three grower lots per harvest date, and the fruit run on a commercial packing line. Fruit were sampled at four different stages of the packing process: in the field bin; after the washer; after the waxer; and after packing into standard cartons. Fruit quality, flavor, and juice ethanol concentration were evaluated immediately after sampling and following 3 and 6 weeks of storage at 5 °C. The overall hedonic score, a measure of flavor, significantly declined from 6.5 to 5.7, as a result of 6 weeks storage. Fruit selected from field bins, from after the washer, and after the waxer were all judged by the taste panel to be equivalent in flavor. The packed fruit were judged to be slightly inferior in flavor. Titratable acidity declined while soluble solids increased as a result of storage; the stage of the packing process influenced neither. Waxing and storage both were associated with higher ethanol levels in the fruit.
The use of ultraviolet fluorescence to identify freeze-damaged navel oranges (Citrus sinensis) was evaluated using fruit harvested following a natural freeze that occurred in California in Jan. 2007. Navel oranges were harvested after the freeze from 14 sites that were previously determined to have a slight to moderate amount of freeze damage. The fruit were evaluated for the presence of small yellow spots characteristic of freeze damage that fluoresce when viewed under a ultraviolet-A (365 nm) source and were then cut and rated using a method currently used by the California Department of Food and Agriculture (CDFA) to determine the presence of internal freeze damage. The percentage of freeze-damaged fruit in each lot as determined by the CDFA method ranged from 0% to 89%. The accuracy of classifying fruit as freeze damaged in each lot by peel fluorescence averaged 44%, with the fruit lots containing the greatest amount of freeze damage having the highest classification percentages. False-positives occurred at a lower rate than false-negatives among the lots. Although some fading was evident, the fluorescence persisted and was readily visible for at least 9 weeks after the freeze event. Removal of fruit with ultraviolet peel fluorescence was ineffective in reducing the percentage of damaged fruit within the examined lots. In the second part of the test, eighteen lots of potentially freeze-damaged fruit were obtained from a packing house, immediately evaluated for freeze damage using ultraviolet light, and then after 4 weeks of storage, were evaluated again using the CDFA method. Fruit that had a slight to moderate degree of freeze damage were tasted and evaluated for sensory characteristics. Both methods of freeze damage detection were poorly related to the sensory characteristics.