Search Results
Crape myrtle (Lagerstroe-mia L. × `Natchez'), live oak (Quercus virginiana Mill.), and Chinese pistachio (Pistacia chinensis Bunge) were planted into a sandy loam soil directly in the field or in grow-bags. Root and top growth were measured in March and July of the second year. Some of the trees were transplanted to 20-gal (76-liter) containers in March or July and grown for 3 months. Chinese pistachio developed a poor root system in field soil and was not ready for harvest in March or July. There was no difference in height, caliper, or top fresh weight for crape myrtle. Caliper and top fresh weight were similar for live oak trees. However, live oaks grown by traditional field production methods were taller than trees produced in grow-bags. With March transplanting, both crape myrtle and live oak trees from traditional field plantings were taller than trees transplanted from grow-bags 3 months after transplanting into containers. Tree top weight, caliper, and root ratings were similar for March-transplanted crape myrtle. Live oak trees transplanted from grow-bags had similar caliper and top weight but a higher root rating. July-transplanted crape myrtle trees had similar values for all variables 3 months later. All live oaks died when transplanted from traditional field plantings to containers in July. All live oaks grown in grow-bags survived transplanting.
Little research is reported on container production of ornamental lotus (Nelumbo nucifera Gaertn.). In this study, fertilization has a critical impact on growth index of lotus `No.7', a numbered clone, in 29 liter (7.5 gallon) containers. Compared to the control treatment (zero fertilization), 1–3 tsp. (4g/tsp.) of 20-10-20 (Pro·Sol) applied every 20 days significantly increased plant height (1.3–1.6 times), fresh biomass (2.4–3.3 times), emerging leaf number (1.9–2.7 times), flower number (2.4–2.7 times), and propagule number (1.3–1.5 times). There was a quadratic response as growth parameters increased with increasing fertilizer rates. Growth indices increased linearly from 0–2 tsp. and then leveled as fertilizer rates reached 3 tsp. No difference was recorded in flower number and plant height for 1–3 tsp. fertilizer treatments. Absorption of nutrition increased with fertilization concentration, an absorption peak value appeared between 13 July and 2 Aug. For 1-3 tsp. treatments, nitrogen is nearly 100% absorbed by lotus every 20 days. However, there is some residue for P and K, especially in 3-tsp. treatment in the earlier and later growth season. Analysis of young leaf tissue indicated that macronutrients N, P, K, and dry mass increased, but Ca decreased with increasing fertilizer rates. In tuber tissue, K, Na, and dry mass increased, while Ca and Fe content decreased. The most efficient rate of fertilizer for 7.5 gallon container production of `No.7' lotus was 2 tsp. per 20 days. Although soluble fertilizer also stimulated proliferation of algae growth in the early growth stage of lotus, this problem dissipated as emerging leaves shaded the water surface.
Lagerstroemia × `Natchez' and Quercus virginiana were planted into a sandy loam soil in grow bags and by traditional field planting methods. After 2 years in the field, 1 sample from each of 6 replications was dug from the field in March. Root and top growth were measured. Half the remaining plants were dug and transplanted into 76 liter containers for 3 months. Growth indices were measured at this time. The remaining trees in the field were dug in July and handled similarly. Data from live oak trees showed increased height in trees produced by traditional field planting methods. No differences between planting methods were found in any other growth indices for the two species. Both crapemyrtle and live oak trees transplanted from traditional field plantings in March had greater height than trees transplanted from grow bags. However, no differences were detected for top weight, caliper or root ratings. July transplanted crapemyrtles showed no differences in any of the growth indices. Live oaks transplanted in July from traditional field plantings to containers all died with no additional growth. Grow bag transplanted oaks survived and continued to grow.
Stem cuttings of Hydrangea paniculata Sieb., Rosa L. `Red Cascade', Salvia leucantha Cav., and Solenostemon scutellarioides (L.) Codd `Roseo' were inserted into six rooting substrates: monolithic slag [(MgFe)2Al4Si5O18], sand, perlite, vermiculite, Fafard 3B, or fine pine bark. Rooting, initial shoot growth, and ease of dislodging substrate particles from root systems upon bare-rooting by shaking and washing cuttings rooted in monolithic slag were compared to cuttings rooted in the five other substrates. Rooting percentage, number of primary roots per rooted cutting, and total root length per rooted cutting for cuttings rooted in monolithic slag were generally similar to the five other substrates. Particles of monolithic slag were dislodged more readily from root systems by shaking than were the other substrates. Gentle washing removed almost all particles of monolithic slag and sand from the root systems of all taxa and removed almost all particles of pine bark from all taxa except S. scutellarioides `Roseo'. Monolithic slag had a bulk density similar to sand, retained less water than the other substrates, and was similar to perlite, vermiculite, and pine bark in particle size distribution. Our studies indicate that monolithic slag, where regionally available, could provide a viable material for producing bare-root cuttings.
A survey was developed evaluating the preference of consumers for purchasing three alternative Christmas tree species. Trees included: Pinus virginiana, a traditional Alabama Christmas tree; a containerized Ilex × `Nellie R. Stevens'; and a cut × Cupressocyparis leylandii. Virginia pine and leyland cypress were rated higher than the holly. The average rating on a scale of 1 to 5 for the Virginia pine and the leyland cypress was 3.75 and 3.63, respectively. Consumers rated the holly an average of 3.29. A rating of 1 indicated a strong negative response and a rating of 5 offered a strong positive response for buying the tree. The median rating for all three species was 4, indicating that 50% of the participants rated them a 4 or higher. The mode, or most frequent rating, was 5 for all three species. Although the average rating for the holly was lower than the average for the Virginia pine and leyland cypress, the holly and the leyland cypress may have a market niche with >50% of the respondents indicating that they would purchase the trees.
Pecan [Carya illinoinensis (Wangenh.) C. Koch `Melrose'] and pear (Pyrus calleryana Decne. `Bradford') trees in the nursery grew more in containers designed to hold water in the lower portion. The water-holding reservoir was obtained either by placing 76-liter containers in a frame holding water to a depth of 6 cm or by using containers with drainage holes 6 cm from the bottom. Continuous waterlogging at the bottom of containers resulted in root pruning and root death in the lower portion of the containers, but roots grew well above the constantly wet zone. Fresh weight of plant tops and trunk diameters were greater after two growing seasons in the containers with water reservoirs compared to those grown in similar containers with no water reservoirs. Total root dry weight was unaffected.
Lotus (Nelumbo) is a highly valued plant with a long history for vegetable, ornamental, and medicinal use. Little information is available on the effects of planting time on performance of lotus, especially when grown in containers. The objectives of this study were to find a suitable planting time and to determine best management practices that are of importance for container lotus production. Effects of planting time and disbudding on plant growth indices in southeast Alabama were evaluated in a container production system for the ornamental lotus, N. nucifera ‘Embolene’. Results indicated that plant growth indices were little influenced by different planting dates in March, but were much influenced by planting dates with a difference over a month between February and May. Plants potted and placed outdoors in March and April performed best, and lotus planted in the greenhouse in February and planted outdoors in February and May performed worst. Flower number was not largely influenced by the planting time, but flowering characteristics, especially the flowering peaks, were different among treatments. Planting lotus outdoors between March and May produced the largest return. Influence of planting time on plant growth indices of lotus appeared to be explained by effects of growth-season climate conditions after planting. Disbudding had no impact on plant height but significantly increased underground fresh weight and the number of propagules. Therefore, disbudding should be considered a best management practice to maximize the yield of rhizomes or propagules. Positive linear, quadratic, or cubic relationships were detected among emerging leaf number, underground fresh biomass, and propagule number. Based on the regression models, the yield of lotus rhizomes or propagules can be predicted by the number of emerging leaves. This research provided a guide for nurseries, researchers, and collectors to select the best time to plant lotus outdoors.
In five experiments, singlenode cuttings of `Red Cascade' miniature rose (Rosa) were treated with a basal quick-dip (prior to insertion into the rooting substrate) or sprayed to the drip point with a single foliar application (after insertion) of Dip `N Grow [indole-3-butyric acid (IBA) + 1-naphthaleneacetic acid (NAA)], the potassium salt of indole-3-butyric acid (K-IBA), or the potassium salt of 1-naphthaleneacetic acid (K-NAA); a single foliar spray application of Dip `N Grow with and without Kinetic surfactant; or multiple foliar spray applications of Dip `N Grow. Spray treatments were compared with their respective basal quick-dip controls {4920.4 μm [1000 mg·L-1 (ppm)] IBA + 2685.2 μm (500 mg·L-1) NAA, 4144.2 μm (1000 mg·L-1) K-IBA, or 4458.3 μm (1000 mg·L-1) K-NAA}. Cuttings sprayed with 0 to 246.0 μm (50 mg·L-1) IBA + 134.3 μm (25 mg·L-1) NAA, 0 to 207.2 μm (50 mg·L-1) K-IBA, or 0 to 222.9 μm (50 mg·L-1) K-NAA resulted in rooting percentages, total root length, percent rooted cuttings with shoots, and shoot length similar to or less than control cuttings. Exceptions were cuttings sprayed with 0 to 2.23 μm
(0.5 mg·L-1) K-NAA, which exhibited shoot length greater than the control cuttings. Addition of 1.0 mL·L-1 (1000 ppm) Kinetic organosilicone surfactant to spray treatments resulted in greater total root length and shoot length. Repeated sprays (daily up to seven consecutive days) had no or negative effects on root and shoot development.
Silver reflective plastic mulches were compared with conventional bare-ground culture of yellow crookneck summer squash (Cucurbita pepo L. var. melopepo Alef.) for reducing aphids and the following mosaic virus diseases: cucumber mosaic, watermelon mosaic I and II, zucchini yellows mosaic, and squash mosaic. Plants grown on silver plastic mulch produced higher marketable yields than those grown on bare ground. Other colors (white, yellow, and black with yellow edges) of plastic mulch were intermediate in their effects on aphid population and virus disease reduction. Silver reflective mulch alone and silver reflective mulch with insecticide were superior to other colors of plastic mulch in reducing aphid populations. Silver reflective plastic mulch, with or without insecticide, resulted in 10 to 13 days delay in the onset of the mosaic diseases noted.