Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Kelly Vining x
Clear All Modify Search

Lilacs (Syringa sp.) have been used as ornamental plants since the mid-16th century and remain important in modern gardens due to their attractive and fragrant flowers. However, a short flowering season is a critical drawback for their ornamental value. Breeders have identified remontancy (reblooming) in dwarf lilac (Syringa pubescens), and have tried to introgress this trait into related species by interspecific hybridization. Molecular tools for lilac breeding are limited because of the shortage of genome sequence knowledge and currently no molecular markers are available to use in breeding for remontancy. In this study, an F1 population from crossing Syringa meyeri ‘Palibin’ × S. pubescens ‘Penda’ Bloomerang® Purple was created and subjected to genotyping-by-sequencing (GBS) analysis and phenotyped for remontancy. Plants were categorized as remontant, semi-remontant, and nonremontant based on the relative quantity of inflorescences during the second flush of flowers. A total of 20,730 single-nucleotide polymorphism (SNP) markers from GBS were used in marker-trait association to find remontant-specific marker(s) without marker position information. Two SNP markers, TP70580 (A locus) and TP82604 (B locus), were correlated with remontancy. The two loci showed a partial epistasis and additive interaction effects on the level of remontancy. Accumulation of recessive alleles at the two loci was positively correlated with increased reblooming. For example, 87% of aabb plants were remontant, and only 9% were nonremontant. In contrast, 100% of AaBB plants were nonremontant. These two SNP markers associated with remontancy will be useful in developing markers for future breeding and demonstrate the feasibility of developing markers for breeding woody ornamental taxa that lack a reference genome or extensive DNA sequence information.

Open Access

As the industrial hemp (Cannabis sativa L.) market grows, there is a need for methods to clonally propagate parental breeding stock and new cultivars. Information is lacking on vegetative cutting propagation of hemp. We evaluated how propagation environment (intermittent mist vs. subirrigation under a humidity dome), indole-3-butyric acid (IBA) formulation (talc rooting powder vs. IBA in solution), and IBA concentration (0, 3000, or 8000 ppm) affected stem cuttings from ‘I3’, a cannabinoid-free cultivar of industrial hemp. Under mist or domes, rooting quality and percent declined at 8000 ppm IBA. Root and shoot quality and rooting percentage also were reduced in 3000 ppm IBA in solution treatment compared with talc. Our data show that for the cultivar tested, cuttings rooted at the highest percentage and produced the highest-quality roots and shoots with either no hormone or 3000 ppm talc powder. These treatments did equally well under humidity domes or intermittent mist.

Open Access

Resistance gene analog (RGA) sequences were obtained from four Mentha longifolia (L.) Huds. accessions using degenerate polymerase chain reaction (PCR) primers targeting the conserved nucleotide binding site domain found in many plant disease resistance genes. Seven distinct RGA families were identified. All M. longifolia RGAs showed similarity to sequences of the non-toll-interleukin 1 receptor R gene class. In addition, degenerate PCR primers based on the tomato (Solanum lycopersicum L.) verticillium wilt resistance (Ve) genes were used to PCR-amplify a 445-base pair (bp) Ve-like sequence from M. longifolia that had ≈57% predicted amino acid identity with Ve. Mint-specific primers based on the original mint Ve sequence were used to obtain mint-specific Ve sequences from four M. longifolia accessions and from peppermint (Mentha ×piperita L.) cultivar ‘Black Mitcham’ that had 95% to 100% predicted amino acid identity to the original mint Ve sequence. Inverse PCR was then used to obtain flanking mint Ve sequence from one M. longifolia accession extending the mint Ve sequence to 1077 bp. This is the first report of RGA sequences in the Lamiaceae and the first report of Ve-like sequences obtained with degenerate PCR primers.

Free access

Because cultivation of exotic woody ornamental plants has led to establishment of a number of invasive species, there is considerable interest in breeding methods to reduce the propensity for spread. We review progress in conventional breeding and transgenic biotechnology approaches to producing sterile forms of ornamental woody plants. Conventional forms of inducing sterility, including induction of polyploidy, interspecific hybridization, and mutagenesis, are generally inexpensive and can be applied to a diversity of species at low to moderate cost. They have also been shown to be capable of producing commercially successful cultivars. In contrast, despite a variety of highly promising and rapidly developing approaches using transgenic methods, the inability to efficiently regenerate and genetically transform most ornamental species makes application of these innovations highly problematic. Moreover, because of the fragmented pattern of ornamental nursery ownership, the numerous species and varieties used, and the high regulatory cost for permits to sell most types of transgenic varieties (even when their environmental risk of spread has been reduced by sterility), application of transgenic methods is largely infeasible. A combination of fundamental regulatory reform and expanded biological research on generalized transformation and sterility methods is needed to overcome these barriers.

Free access