Search Results
Visual ratings are the standard for evaluating turfgrass quality. However, to provide more objective evaluations and to address statistical concerns, other methods have been developed to measure turfgrass quality, including digital image analysis and measurements of chlorophyll content. These have been largely applied to traditionally used turfgrass species, but here we used these methods to evaluate turfgrass quality of nontraditional species and mixtures that are native or adapted to the intermountain west region of North America. Two fertilizer treatments (1.0 or 2.0 lb/1000 ft2 nitrogen) were applied to 21 different species and species mixtures in North Logan, UT. These plots were irrigated to replace 60% of the local evapotranspiration rate and were mowed at 4 inches. Turfgrass quality ratings were most effective in measuring quality among the diverse species used in this study. Because of the wider variation in acceptable visual characteristics and lower quality expectations for low-maintenance native turf, the objective evaluation methods proved less useful. Generally, chlorophyll meter data, digital image analysis of cover, and digital image analysis of color data were not well correlated with human visual quality ratings in this study. Measurements were well correlated in some species, but not in others. These methods can supplement, but cannot replace, human visual turfgrass quality ratings for comparison of dissimilar grasses.
Increased urban and suburban populations in the arid western United States have resulted in more water demand; however, water availability in the region has become limited because of inadequate precipitation. Recent droughts have led to restrictions on irrigating landscape plants. Garden rose (Rosa ×hybrida) is commonly used as flowering plants in residential landscapes, but its drought tolerance has not been widely studied. The objective of this study was to determine the impact of reduced irrigation frequency on visual quality, plant growth, and physiology of five garden rose cultivars, including ChewPatout (Oso Easy® Urban Legend®), Meibenbino (Petite Knock Out®), MEIRIFTDAY (Oso Easy® Double Pink), Overedclimb (Cherry Frost™), and Radbeauty (Sitting Pretty™). Twenty-four plants of each rose cultivar were established in a trial plot at Utah Agricultural Experiment Station Greenville Research Farm (North Logan, UT, USA) in Summer 2021. Plants were randomly assigned to one of three deficit irrigation treatments for which irrigation frequencies were calculated using 80% reference evapotranspiration (ETO) (high), 50% ETO (medium), and 20% ETO (low). The total volumes of irrigation water applied to each plant were 345.6, 172.8, and 43.2 L for the high, medium, and low irrigation frequencies, respectively, during the deficit irrigation trial from 12 May to 30 Sep 2022. Root zones were wetted more frequently as irrigation frequency increased from low to high irrigation frequencies. Decreased irrigation frequency increased the number of visibly wilted and damaged leaves on all rose cultivars. However, only ‘Meibenbino’ and ‘MEIRIFTDAY’ exhibited a reduction in overall appearance under decreased irrigation frequency. The relative growth indices of both ‘Meibenbino’ and ‘MEIRIFTDAY’ decreased by 6%, whereas the dry weights of their leaves decreased by 37% and 36%, respectively, as irrigation decreased from high to low frequencies. Roses in this study appeared to decrease stomatal conductance up to 51% when irrigation decreased from high to low frequencies, or when air temperature increased. ‘Meibenbino’ and ‘MEIRIFTDAY’ exhibited unacceptable overall appearance, growth reduction, and higher leaf–air temperature differences, and they were less tolerant to reduced irrigation. Although the ‘Radbeauty’ maintained plant growth under the reduced irrigation frequency, the large leaf size led to a more visibly wilted appearance and the potential for heat stress, thus impairing visual quality. ‘ChewPatout’ and ‘Overedclimb’ were most tolerant to deficit irrigation at 20% ETO and maintained plant growth with acceptable visual quality and lower leaf temperatures when they received one irrigation during the growing season.