Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Kelly J. Prevete x
Clear All Modify Search
Free access

Kelly J. Prevete, R. Thomas Fernandez and William B. Miller

Drought stress durations of 2, 4, and 6 days were imposed on Boltonia asteroides `Snowbank', Eupatorium rugosum, and Rudbeckia triloba to determine the effects on carbohydrate partitioning in the plant. Drought stress was imposed on 19 Sept. 1997 on 1.9-L containerized plants. Plants were planted in the field the day following release from stress. Crown and leaf samples of the three species were collected 21, 23, 25 Sept. 1997 and 30 Jan. and 4 May 1998 and were analyzed for low molecular weight sugars and fructans. The species differed in the time it took for longer chain fructans to break down to shorter chain fructans and low molecular weight sugars (glucose, fructose). The drought tolerant Boltonia and Rudbeckia had shifts from longer chain to shorter chain fructans by day 4 of stress. Boltonia had a change in carbohydrate partitioning in the leaf tissue, while Rudbeckia had a change in crown tissue carbohydrate partitioning. Eupatorium did not have a shift in longer chain fructans to shorter chain fructans in crown tissue until day six of stress. The slower shift from longer chain fructans to shorter chain fructans by Eupatorium, compared to Boltonia and Rudbeckia, could explain the lack of drought tolerance of Eupatorium. The shift from high molecular weight sugars to low molecular weight sugars suggests that the higher molecular weight sugars broke down to lower molecular weight sugars in response to drought stress.

Free access

R. Thomas Fernandez, Robert E. Schutzki and Kelly J. Prevete

Responses of Magnolia ×soulangiana (Soul.-Bod.) `Jane' (`Jane' saucer magnolia) to consecutive short term pretransplant drought stresses and recovery after transplanting were evaluated beginning October 1997 and June 1998. Plants were subjected to one (mild) or two (moderate) 3-day drought stress periods or a two 3-day and one 4-day (severe) drought stress period, each separated by two rewatering periods over 24 hours. One day after each stress period, plants were transplanted into the field and well watered to monitor recovery from stress. Plant response was determined by measuring whole-plant CO2 assimilation, leaf gas exchange (CO2 assimilation, transpiration, stomatal conductance) and canopy growth throughout stress and recovery periods. Whole-plant and leaf CO2 assimilation were lower for the stressed treatments for most of the measurements taken during stress in the fall and spring. After release from stress and transplanting, leaf CO2 assimilation returned to control levels for mild and moderate fall stresses within 2 to 3 d by the next measurement, while it was over 3 weeks until recovery from the severe stress. There was no difference in leaf gas exchange following release from stress and transplanting during the spring stress. More rapid defoliation occurred for the severe fall-stressed plants compared to the controls after release from stress in the fall. Flower number was reduced in spring for the fall-stressed plants. At termination of the experiment, the growth index was lower for severe fall-stressed plants but there were no differences for other fall stress treatments. There was no increase in growth for control or stressed plants for the spring experiment.

Free access

Kelly J. Prevete, R. Thomas Fernandez and William B. Miller

Boltonia asteroides L. `Snowbank' (Snowbank boltonia), Eupatorium rugosum L. (eastern white snakeroot), and Rudbeckia triloba L. (three-lobed coneflower) were subjected to drought for 2, 4, and 6 days during the fall and spring. Leaf gas exchange, leaf water potential, growth, and carbohydrate partitioning were measured during drought and throughout the following growing season. Leaf gas exchange of B. asteroides was not affected by drought treatment in the fall, not until day 6 of spring drought, and there were no long-term effects on growth. Transpiration and stomatal conductance of R. triloba decreased when substrate moisture decreased to 21% after drought treatment during both seasons. Assimilation of drought-treated R. triloba decreased when substrate moisture content decreased to 12% during spring but was not affected by drought in the fall. There was a decrease in the root-to-shoot ratio of R. triloba that had been treated for 4 days, which was attributed to an increase in the shoot dry weight (DW) of treated plants. Reductions in spring growth of E. rugosum were observed only after fall drought of 6 days, and there were no differences in final DWs of plants subjected to any of the drought durations. Spring drought had no effect on growth index or DW of any of the perennials. Boltonia asteroides and R. triloba had increases in low-molecular-weight sugars on day 4 of drought, but E. rugosum did not have an increase in sugars of low molecular weight until day 6 of drought. Differences in drought response of B. asteroides, E. rugosum, and R. triloba were attributed to differences in water use rates.