Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Kellie J. Walters x
Clear All Modify Search

Basil (Ocimum sp.) is the most popular fresh culinary herb, but the effects of air temperature on growth and development of basil have not been well characterized. Our objective was to quantify the effects of air temperature on growth and development of three basil species. Seedlings of sweet basil (Ocimum basilicum ‘Nufar’), holy basil (O. tenuiflorum), and lemon basil (O. ×citriodorum ‘Lime’ and O. basilicum ‘Sweet Dani’) were placed in five different growth chambers with target air temperatures of 11, 17, 23, 29, or 35 °C. After 3 weeks, chlorophyll fluorescence (F v /F m ), plant height, node and branch number, fresh and dry weight, and flowering data were recorded. For all species, F v /F m increased as temperature increased to 17 or 23 °C, then plateaued, whereas height increased with temperature to 23 or 29 °C. Also, the percentage of plants with flowers or flower buds increased with temperature to 17 or 23 °C for all species, with the exception of sweet basil, of which all plants were vegetative and node appearance rate was calculated. Sweet basil node appearance increased from 0.03 to 0.30 node/day as the temperature increased from 11 to 29 °C. Fresh weight gain increased with increasing temperature to 29 °C, but then decreased at 35 °C. Data from plants grown within the linear air temperature range were used to develop models for calculating the base temperature (Tb) and predicting growth in response to air temperature. These models can be applied by commercial producers to schedule crops and predict yields.

Free access

Our objective was to quantify the effect of mineral nutrient concentration of a nutrient solution on the growth of basil species and cultivars grown under high and low photosynthetic daily light integrals (DLIs). Sweet basil (Ocimum basilicum ‘Nufar’), lemon basil (O. ×citriodorum ‘Lime’), and holy basil (O. tenuiflorum ‘Holy’) seedlings were transplanted into nutrient-film technique (NFT) systems with different nutrient solution electrical conductivities (EC; 0.5, 1.0, 2.0, 3.0, or 4.0 dS·m–1) in greenhouses with a low (≈7 mol·m–2·d–1) or high (≈15 mol·m–2·d–1) DLI. Although nutrient solution EC did not affect growth and morphology, increasing DLI did. For example, when sweet basil was grown under a high DLI, the fresh and dry weight, height, and node number increased by 144%, 178%, 20%, and 18%, respectively, compared with plants grown under the low DLI, and branching was also stimulated. In contrast, DLI had little effect on tissue nutrient concentration, although nutrient solution did. Most tissue nutrient concentrations increased with increasing EC, with the exception of Mg and Ca. For example, N in sweet basil increased by 0.6% to 0.7% whereas Mg decreased by 0.2% as EC increased from 0.5 to 4.0 dS·m–1. Across treatments and basil species, tissue nutrient concentrations were generally within recommended ranges with no visible deficiencies. Based on our results, nutrient solution concentrations for hydroponic basil production can be selected based on factors such as other species grown in the same solution or by reducing fertilizer inputs.

Free access

Basil (Ocimum sp.) is the most popular fresh culinary herb. However, there is a lack of data characterizing the effect of hydroponic production systems and cultivars on the yield of hydroponically produced basil. Our objectives were to quantify productivity and characterize growth of basil cultivars grown in two hydroponic production systems. Thirty-five basil cultivars, including selections of sweet basil (O. basilicum), holy basil (O. tenuiflorum), and lemon basil (O. ×citriodorum and O. basilicum) were chosen. Seedlings were transplanted into nutrient film technique (NFT) or deep flow technique (DFT) systems and grown for 3 weeks. There was no interaction between basil cultivars and hydroponic production system. Fresh weight of plants grown in DFT systems was 2.6 g greater compared with plants grown in NFT systems. Basil cultivars differed greatly in fresh weight. In general, holy, lemon, and sweet basil cultivars produce moderate to high fresh weight, but vary greatly. Dissimilarly, bush (O. basilicum var. minimum), cinnamon (O. basilicum), large-leaf (O. basilicum), and thai basils (O. basilicum var. thyrisiflorum) produce moderate fresh weight and purple basil (O. basilicum) cultivars produce the least fresh weight. The yield of basil seems to be affected more by cultivar selection than hydroponic production system. Therefore, hydroponic basil producers should select basil cultivars based on flavor and yield, while hydroponic systems should be selected based on operational preferences.

Free access

The plant growth regulator (PGR) ethephon [(2-chloroethyl) phosphonic acid; ETH] can be sprayed on floriculture crops to inhibit internode elongation, hinder apical dominance, increase lateral branching, and abort flower buds and flowers. However, the efficacy of ETH can be reduced as the pH of the carrier water used to mix the spray solution or temperature increase. Therefore, our objective was to quantify how the efficacy of ethephon sprays is influenced by carrier water alkalinity (CaCO3; ALK) and the air temperature at application (TEMP). Young plants of verbena (Verbena peruviana) ‘Aztec Blue Velvet’, ivy geranium (Pelargonium ×peltatum) ‘Precision Pink’, and petunia (Petunia ×hybrida) ‘Easy Wave Neon Rose’ were transplanted into 11-cm-diameter containers and grown in a greenhouse with an average daily air temperature (ADT) set point of 21 °C. Before the ETH spray application(s), the ADT in each greenhouse compartment was changed from a set point of 21 °C to 14, 17, 20, 23, or 26 °C for ≈24 hours. Plants were sprayed with 0, 250, 500, or 750 mg·L−1 ETH mixed with carrier water containing ≈50, 150, or 300 mg·L−1 CaCO3 2 and 3 weeks (Expt. 1) or 1 or 2 weeks (Expt. 2) after transplant. Generally, high ALK had a negative effect on spray efficacy. For example, an increase in ALK from 50 to 300 mg·L−1 CaCO3 resulted in one and five fewer ivy geranium and verbena branches, respectively. In addition, as application TEMP increased above 23 °C, chemical efficacy generally decreased in all species. For instance, as ETH increased from 0 to 750 mg·L−1 across ALKs, inflorescence number of ivy geraniums increased from 7 to 18 at a TEMP of 23 °C, but was unaffected at 26 °C. Based on our results, we can conclude that both ALK and TEMP influence ETH efficacy and are additional factors for greenhouse growers to consider when making applications.

Free access

Our objective was to quantify the efficacy of foliar plant growth retardant applications on plant height and time to flower of seed-propagated new guinea impatiens (Impatiens hawkeri) produced in packs and flats. ‘Divine Cherry Red’, ‘Divine Scarlet Bronze Leaf’, and ‘Divine White Blush’ seedlings were planted in 1801-cell packs. Seven days after planting, deionized water (control) or solutions containing ancymidol (15 to 60 mg·L−1), chlormequat chloride (750 to 3000 mg·L−1), daminozide (1250 to 5000 mg·L−1), ethephon (250 to 1000 mg·L−1), flurprimidol (10 to 40 mg·L−1), paclobutrazol (10 to 40 mg·L−1), or uniconazole (5 to 20 mg·L−1) were applied to seedlings. A second experiment was performed with the same cultivars quantifying the growth and development in response to a broader range of flurprimidol or paclobutrazol (5 to 40 mg·L−1) or uniconazole (2.5 to 20 mg·L−1) sprays. Plant height was measured 7 weeks after planting. For Expt. 1, ancymidol, chlormequat chloride, and daminozide had little to no impact on stem elongation. However, flurprimidol, paclobutrazol, and uniconazole suppressed height at flowering of all three cultivars. In Expt. 2, plant height with concentrations flurprimidol, paclobutrazol, or uniconazole up to 27 to 30, 20 to 30, or 4 to 5 mg·L−1, respectively, depending on the cultivar. Five to 20 mg·L−1 flurprimidol or paclobutrazol, or < 2.5 mg·L−1 uniconazole may be used to control stem elongation of seed-propagated new guinea impatiens for production in flats.

Full access

Ethephon drenches have been reported to effectively control growth of containerized bedding plants. However, previous researchers have indicated that the effects of ethephon drenches on growth and flowering may differ depending on the timing of applications. Our objectives were to quantify the effects of ethephon concentration, timing of substrate drench application, and their interaction on the growth, size, and flowering of two annual bedding plants. Angelonia (Angelonia angustifolia) and geranium (Pelargonium ×hortorum), seedlings were planted in 10.2-cm-diameter containers filled with a commercial, soilless growing substrate composed of (by vol.) 75% sphagnum peatmoss, and 25% perlite. Five, 10, 15, or 20 days after transplanting seedlings, 70-mL aliquots containing 0, 50, 100, or 200 mg·L−1 ethephon were applied as substrate drenches. Species varied in their growth and flowering responses to ethephon concentration, drench application timing, and their interaction. For angelonia, flowering was delayed most with early applications and high concentrations, and delay was diminished with later applications. Angelonia height was unaffected by late applications, though lateral growth was suppressed 20 days after transplant with 200 mg·L−1 ethephon. Flowering of geranium was only delayed when ethephon was applied 5 days after transplanting, whereas flowering, vegetative height, and shoot dry weight were affected more by earlier applications and higher concentrations. Width and root weight were only affected by ethephon concentration, with growth suppression increasing as concentrations increased. Ethephon is an effective growth regulator when applied as a substrate drench. However, the degree of activity and resulting impact on flowering, size, and growth is influenced by the interaction between ethephon concentrations and the timing of drench applications after transplanting.

Free access

Our objective was to quantify the efficacy of different plant growth regulator (PGR) substrate drenches on growth of lantana (Lantana camara) cultivars varying in growth habit. Rooted ‘Little Lucky Peach Glow’, ‘Lucky Peach’, and ‘Landmark Peach Sunrise’ lantana cuttings were individually planted into 4-inch-diameter containers filled with a commercial, soilless growing substrate. Fourteen days after planting, solutions containing 0 (control), 0.5, 1, 2, or 4 mg·L−1 ancymidol, flurprimidol, paclobutrazol, or uniconazole were applied to the surface of the growing substrate. Six weeks after applying PGR drenches, data were collected. The growth index (GI), an integrated measurement of plant size incorporating the height and widths of plants, was calculated. There was variation in the GI among the control plants, reflecting variation among cultivars within the species. In addition, we measured variation in activity among the different PGRs applied. Across the concentrations applied, ancymidol generally had the lowest activity across the four PGRs. For example, drenches containing 4 mg·L−1 ancymidol resulted in plants that were similar to plants treated with 0.5 to 1 mg·L−1 flurprimidol or uniconazole or 2 mg·L−1 paclobutrazol for ‘Lucky Peach’ lantana. Across all cultivars, flurprimidol and uniconazole had the greatest activity in suppressing plant height, width, and GI. Substrate drenches containing flurprimidol, paclobutrazol, or uniconazole are useful to control size of lantana produced in containers, though the recommended concentration depends on the active ingredient and the growth habit of cultivars being treated.

Full access

Foliage annuals are primarily grown for the aesthetic appeal of their brightly colored, variegated, or patterned leaves rather than for their flowers. Once foliage annuals become reproductive, vegetative growth of many species diminishes or completely ceases and plants can become unappealing. Therefore, the objectives of this study were to quantify how growth and development during production and stock plant cutting yield of bloodleaf (Iresine herbstii), Joseph’s coat (Alternanthera sp.) ‘Brazilian Red Hots’ and ‘Red Threads’, Persian shield (Strobilanthes dyerianus), and variegated potato vine (Solanum jasminoides) are influenced by photoperiod and night interruption (NI) lighting with or without far-red (FR) radiation. Photoperiods consisted of a 9-hour short day (SD) or a 9-hour SD extended to 10, 12, 13, 14, or 16 hours with red (R):white (W):FR light-emitting diode (LED) lamps (R:FR = 0.8) providing a total photon flux density (TPFD) of ≈2 µmol·m−2·s–1 of radiation. In addition, two treatments consisted of a 9-hour SD with a 4-hour NI from lamps containing the same R:W:FR or R:W LEDs (R:FR = 37.4). Bloodleaf plant and Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’ developed inflorescences or flowers under photoperiods ≤12 to 13 hours and were classified as obligate SD plants. Under LEDs providing R:W:FR radiation, stem elongation of reproductive bloodleaf and Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’ increased as photoperiod increased from 9 to 12 hours. In addition, stem elongation of bloodleaf, Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’, and Persian shield and growth index (GI = {plant height + [(diameter 1 + diameter 2)/2]}/2) of bloodleaf and Persian shield was significantly greater under NI with FR radiation than without FR radiation. Fewer or no cuttings were harvested from Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’ under photoperiods ≤12 or ≤13 hours, respectively. To prevent unwanted flowering of bloodleaf plant and Joseph’s coat, a photoperiod ≥14 hours or 4-hour NI must be maintained with LEDs providing either R:W or R:W:FR radiation, however; stem elongation is significantly reduced under R:W LEDs.

Free access

Controlled environment (CE) food crop production has existed in the United States for many years, but recent improvements in technology and increasing production warranted a closer examination of the industry. Therefore, our objectives were to characterize historical trends in CE production, understand the current state of the U.S. hydroponics industry, and use historical and current trends to inform future perspectives. In the 1800s, CE food production emerged and increased in popularity until 1929. After 1929, when adjusted for inflation (AFI), CE food production stagnated and decreased until 1988. From 1988 to 2014, the wholesale value of CE food production increased from $64.2 million to $796.7 million AFI. With the recent increase in demand for locally grown food spurring an increase in CE production, both growers and researchers have been interested in using hydroponic CE technologies to improve production and quality. Therefore, we surveyed U.S. hydroponic food crop producers to identify current hydroponic production technology adoption and potential areas for research needs. Producers cited a wide range of technology utilization; more than half employed solely hydroponic production techniques, 56% monitored light intensity, and more than 80% monitored air temperature and nutrient solution pH and electrical conductivity. Additionally, the growing environments varied from greenhouses (64%), indoors in multilayer (31%) or single-layer (7%) facilities, to hoop houses or high tunnels (29%). Overall, producers reported managing the growing environment to improve crop flavor and the development of production strategies as the most beneficial research areas, with 90% stating their customers would pay more for crops with increased flavor. Lastly, taking historical data and current practices into account, perspectives on future hydroponic CE production are discussed. These include the importance of research on multiple environmental parameters instead of single parameters in isolation and the emphasis on not only increasing productivity but improving crop quality including flavor, sensory attributes, and postharvest longevity.

Open Access