Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Katie O’Connor x
Clear All Modify Search
Restricted access

Katie O’Connor, Ben Hayes, Craig Hardner, Mobashwer Alam and Bruce Topp

Current macadamia breeding programs involve a lengthy and laborious two-stage selection process: evaluation of a large number of unreplicated seedling progeny, followed by replicated trials of clonally propagated elite seedlings. Yield component traits, such as nut-in-shell weight (NW), kernel weight (KW), and kernel recovery (KR) are commercially important, are more easily measured than yield, and have a higher heritability. A genome-wide association study (GWAS) combined with marker-assisted selection offers an opportunity to reduce the time of candidate evaluation. In this study, a total of 281 progeny from 32 families, and 18 of their 29 parents have been genotyped for 7126 single nucleotide polymorphism (SNP) markers. A GWAS was performed using ASReml with 4352 SNPs. We found five SNPs significantly associated with NW, nine with KW, and one with KR. Further, three of the top 10 markers for NW and KW were shared between the two traits. Future macadamia breeding could involve prescreening of individuals for desired traits using these significantly associated markers, with only predicted elite individuals continuing to the second stage of selection, thus potentially reducing the selection process by 7 years.

Restricted access

Mobashwer Alam, Craig Hardner, Catherine Nock, Katie O’Connor and Bruce Topp

The Hawaiian cultivars Keaau (HAES660) and Mauka (HAES741) were selected by the University of Hawaii—released in 1966 and 1977, respectively—and have been used extensively in macadamia orchards throughout the world. Recent molecular evidence suggests that these two cultivars are almost identical genetically; however, commercially they have been considered phenotypically different. This study reviews available molecular, historical, and phenotypic evidence to examine the hypothesis that these two cultivars are the same genotype. Phenotypic variability for morphological traits was observed in a replicated trial at Wolvi, QLD. Historical evidence suggests that both ‘HAES660’ and ‘HAES741’ were derived from the same orchard. We identified strong genetic and phenotypic similarities between these cultivars, with variability in some simple traits. This study provides evidence that these two cultivars are isogenic or near isogenic and may have been derived from the same plant source.