Search Results
You are looking at 1 - 10 of 15 items for
- Author or Editor: Kathleen G. Haynes x
Although potato (Solanum tuberosum L.) tuber yellow flesh per se is known to be controlled by a single gene, the intensity of yellow flesh varies widely in Solanum L. species. Many diploid species have very intense yellow flesh, as compared to the commercial tetraploid yellow-flesh cultivar `Yukon Gold'. Inheritance of yellow-flesh intensity at the diploid level was investigated in a hybrid population of S. phureja ssp. phureja (Juz. & Buk.)-S. stenotomum ssp. stenotomum (Juz. & Buk.) (PHU-STN). Six randomly chosen male parents were crossed to five randomly chosen female parents in a Design II mating scheme. In 1993, ≈12 progeny (clones) from each of the 30 families were planted in a randomized complete block design with two replications in Presque Isle, Maine, and evaluated for tuber yellow-flesh intensity as measured by a reflectance colorimeter. Twenty-five tubers from each plot were scored using the YI E-313 yellow intensity scale. An average YI E-313 score was obtained for each plot. Narrow-sense heritability on a plot mean basis was estimated as 0.99 with a SE of 0.65 to 0.72. There were significant differences among clones within a family. Results suggest that rapid progress can be made in breeding for intense yellow flesh in this diploid population. Clones from this population that produce 2n gametes represent an important source of germplasm for enhancing the intensity of the yellow-flesh trait in tetraploid potatoes.
Anthracnose, caused by Colletotrichum coccodes, is a serious ripe tomato fruit rot disease. Genetic resistance to anthracnose is not available in commercial tomato cultivars, but has been reported in small-fruited Plant Introductions (P.I.), and with lesser intensity in a number of breeding lines. Transfer of high levels of resistance from these breeding lines or P.I.s to elite materials has proven difficult. Inheritance of resistance has been described as complex with at least six loci influencing resistance reactions. Segregating populations originating from a cross between a susceptible tomato breeding line and a large-fruited breeding line (88B147) with resistance derived from Lycopersicon esculentum var. cerasiforme P.I. 272636, were evaluated for anthracnose resistance. Analysis of anthracnose resistance in puncture-inoculated fruit indicated small, but significant, additive genetic effects for resistance. Additional populations were developed from crosses of a susceptible inbred processing tomato cultivar with: 1) the resistant P.I. 272636, 2) an unadapted small-fruited resistant line developed from P.I. 272636, and 3) the large-fruited breeding line 88B147, also with resistance derived from P.I. 272636. Small additive effects identified in large-fruited material, in comparison to the resistant P.I., suggests that resistance loci have been lost during germplasm development. This is consistent with the relatively larger lesions observed in large-fruited lines derived from P.I. 272636. Positive correlations were noted between small fruit size and high levels of anthracnose resistance. Identification of molecular markers linked to resistance genes in the respective populations will be discussed.
Fruit of the cultivated tomato (Lycopersicon esculentum Mill.) store predominantly glucose and fructose whereas fruit of the wild species L. hirsutum Humb. & Bonpl. characteristically accumulate sucrose. Reducing sugar and sucrose concentrations were measured in mature fruit of parental, F1, F2, and backcross (BC1) populations derived from an initial cross of L. esculentum `Floradade' × L. hirsutum PI 390514. Generational means analysis demonstrated that additive effects were equal to dominance effects for percentage of reducing sugar. It was determined that a single major gene, dominant for a high percentage of reducing sugar, regulates the percentage of reducing sugar in tomatoes. We propose that this gene be designated sucr. Only additive effects were demonstrated to be important for glucose: fructose ratios. Using L. hirsutum as a donor parent for increasing total soluble solids concentration in the cultivated tomato is discussed.
Inheritance of resistance to tomato anthracnose caused by Colletotrichum coccodes (Wallr.) S.J. Hughes was evaluated in parental, F1, F2, and backcross populations developed from crosses between adapted resistant (88B147) and susceptible (90L24) tomato (Lycopersicon esculentum Mill.) breeding lines. Resistance was evaluated via measurement of lesion diameters in fruit collected from field-grown plants and puncture inoculated in a shaded greenhouse. Backcross and F2 populations exhibited continuous distributions suggesting multigenic control of anthracnose resistance. Anthracnose resistance was partially dominant to susceptibility. Using generation means analysis, gene action in these populations was best explained by an additive-dominance model with additive × additive epistatic effects. A broad-sense heritability (H) of 0.42 and narrow-sense heritability (h2) of 0.004 was estimated for resistance to C. coccodes. One gene or linkage group was estimated to control segregation for anthracnose resistance in the cross of 90L24 × 88B147.
Potato leafroll virus (PLRV) is a serious aphid transmitted virus disease of potato (Solanum tuberosum L.). Field observations suggest that the cv. BelRus is tolerant to PLRV. Greenhouse grown BelRus and PLRV susceptible potato cvs. Green Mountain and Katahdin were tested for PLRV with enzyme linked immunosorbant assay (ELISA) and subsequently infested with PLRV infected green peach aphids (Myzus persicae). ELISA was used to test leaves from the top, middle and bottom portion of the plants at 7 day intervals beginning 7 days after aphid infestation. PLRV was detected in all tested locations of the Green Mountain and Katahdin plants 21 days after inoculation. In BelRus, throughout the 11 week test, PLRV was detected predominantly in the top portion of the plants and at low titres. These results suggest that tolerance to PLRV infection in the cv. BelRus may be due to suppression of virus replication.
Bacterial soft rot of bell pepper (Capsicum annuum L.), caused by Erwinia spp., is a destructive postharvest market disease of this crop. Control is presently limited to chemical treatments. Methods of inoculating pepper fruit were evaluated to develop a reliable technique for soft rot resistance screening. Erwinia carotovora subsp. atroseptica (Eca) was isolated from partially decayed field grown pepper fruit at Beltsville, MD. Fruit were inoculated with suspensions of Eca via: (a) abrasion with Carborundum, (b) hypodermic puncture, or (c) non-wounded tissue. Inoculated fruit were held under high humidity at 21-23C for two to three days prior to scoring. Degree of soft rot decay was determined via fruit weight loss from two replicates of the experiment over the course of the growing season. Significant differences were not evident among varieties or experiment dates for weight loss due to tissue decay. Hypodermic puncture inoculation was superior to other methods for inducing fruit rot.
Consumer demand for specialty market potatoes has been growing. Cultivated South American diploid potatoes possess great variation for skin and flesh colors, shape, and taste. A long-day adapted population of Solanum tuberosum groups Phureja and Stenotomum (phu-stn) was evaluated for characteristics associated with the type known as papa criolla or papa amarilla in South America. Tubers have intense yellow flesh and may be fried or roasted and eaten whole. A U.S. northern location (Maine), representative of a seed growing region, and two southern locations (Florida and New Mexico), representative of potato growing regions near large Hispanic populations, evaluated yellow-fleshed clones selected within a phu-stn population. Agreement between selectors at two locations was greater than 50%. Tuber skin color and shape were highly correlated between locations; flesh color and tuber dormancy moderately so; eye depth had low correlation between locations; and appearance and skin texture had low or no correlation between locations. Tuber dormancy was generally short, but a few longer dormant clones were identified. There were significant differences among clones for yields, with the highest yields occurring in Maine. More intense evaluations are planned for a subset of these clones before possible release as new varieties. Future breeding efforts will be undertaken to lengthen tuber dormancy in this population.
Conventional wisdom regarding potato breeding indicates that a strong triploid block prevents the development of viable triploid seeds from crosses between tetraploid and diploid clones. However, in a recent set of crosses between elite tetraploid potatoes and an improved diploid hybrid population derived from group Stenotomum and group Phureja, 61.5% of the resulting clones were found to be triploid. If clones derived from one diploid parent suspected of producing a high frequency of unreduced gametes were excluded, then the frequency of triploid clones increased to 74.4%. Tubers of these triploids are generally intermediates of the two parental groups. Our findings indicate the possibility of using triploid potatoes in potato variety development programs and in genetic and genomic studies.
For the yellow-flesh fresh market, potato (Solanum tuberosum L.) cultivars with intense yellow-flesh are desired. The effects of clone, environment and clone × environment interactions on the intensity of the yellow-flesh trait in tetraploid potatoes were investigated. Twenty-four yellow-flesh clones, including 23 USDA selections and the check cultivar Yukon Gold, were evaluated for tuber yellow-flesh color as measured by a reflectance colorimeter in replicated field trials in Presque Isle, Maine in 1991 and 1992, and in Riverhead, N.Y., and Bridgeton, N.J., in 1992 and 1993. There were significant differences among environments and among clones for yellow-flesh intensity. The clone × environment interaction was also significant. Broad-sense heritability of yellow-flesh intensity was estimated as 0.93 with a 95% confidence interval of 0.92-0.97. The instabilities noted in some of these clones, although statistically significant, are of limited practical concern. The intensity of yellow-flesh will be an important trait for breeders to select in developing new yellow-flesh cultivars. However, in testing yellow-flesh clones for future cultivar release, the role of environment and clone environment interactions on other agronomic traits will probably be more important than the environment and clone environment interactions on the intensity of yellow-flesh.
For the yellow-flesh fresh market, potato (Solanum tuberosum L.) varieties with intense yellow flesh are desired. Twenty-five yellow-flesh clones, including 24 U.S. Dept. of Agriculture (USDA) selections and the check variety `Yukon Gold', were evaluated for tuber yellow-flesh color, as measured by a reflectance colorimeter, and for individual tuber weight in replicated field trials in Presque Isle, Maine, in 1991 and 1992. There were significant differences among clones for yellow-flesh intensity. Yellow-flesh intensity in two USDA selections was significantly less than in `Yukon Gold'. In four USDA selections, yellow-flesh intensity was significantly greater than in `Yukon Gold'. In general, there was an inverse relationship between tuber weight and yellow-flesh intensity. Subsamples of tubers whose weight fell between the 10 to 90, 25 to 75, 35 to 65, and 40 to 60 percentile were compared to the full sample. There was good agreement between the 10 to 90 and 25 to 75 percentile subsample and the full sample regarding the average yellow-flesh intensity and in the consistency of pairwise comparisons between individual selections and `Yukon Gold'. For determining yellow-flesh intensity, the 25 to 75 percentile subsample was as informative as the full sample.