Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Kassim Al-Khatib x
Clear All Modify Search

Soil residual herbicides registered for use on grapes can be applied from fall to spring, before weed emergence. However, ample early-spring moisture and warm weather may enhance weed emergence before herbicide application in the spring and prevent timely application. Therefore, fall application of herbicides can be beneficial if herbicides would provide adequate weed control in the following spring. Warm and wet winters may enhance herbicide degradation and shorten herbicide residual activity that result in poor weed control the following spring. Fall and spring application of oryzalin or norflurazon applied alone or in combination with diuron, simazine, or oxyfluorfen were evaluated for weed control in commercial vineyards at Oskaloosa and Eudora in northeast Kansas in 2003 and 2004. Weeds were not controlled adequately with oryzalin or norflurazon applied alone. At the end of the growing season, however, weed control was greater with spring than fall application. In addition, weed control with norflurazon was slightly greater than oryzalin. Norflurazon or oryzalin applied in combination with simazine, diuron, or oxyfluorfen controlled more weeds than norflurazon or oryzalin applied alone. The greatest control was with norflurazon or oryzalin applied with oxyfluorfen. In general, all herbicide combinations applied in the spring and fall provided similar weed control 4 months after spring application. However, at the end of the growing season, weed control was 10% to 20% greater when herbicides applied in the spring than fall. This study showed that acceptable weed control can be achieved when norflurazon or oryzalin is applied with oxyfluorfen and diuron in the fall.

Free access

Thermotolerance of photosynthesis and productivity in `Chandler' and `Sweet Charlie' strawberry plants (Fragaria ×ananassa Duch.) exposed to three temperature regimes was studied. Net CO2 assimilation rate (A), variable chlorophyll fluorescence (Fv), efficiency of photosystem II (Fv/Fm), relative chlorophyll content, plant growth, and fruit yield and quality were measured. High temperature (40 °C day/35 °C night) was more detrimental to photosynthesis and productivity than the moderate or low temperature (30/25 or 20/15 °C). Net CO2 assimilation rate in both cultivars was markedly reduced by 40/35 °C, although there was slight decline in `Sweet Charlie' at 30/25 °C. `Chandler' maintained significantly higher A rates than `Sweet Charlie' for at least three weeks of heat stress, indicating that `Chandler' might tolerate longer exposure to high temperature. In parallel to the decrease in A rate, intercellular CO2 concentration (Ci) and instantaneous water use efficiency (WUE) were significantly decreased at high temperature. `Chandler' leaves were cooler and transpired more than `Sweet Charlie' leaves, suggesting that each cultivar adopted different heat resistance mechanisms at 40/35 °C. There were changes in Fv and Fv/Fm with increasing temperature, indicating irreversible damage to photosystem II at 40/35 °C might have occurred. The trend of reduction in stomatal conductance (g S) in both cultivars at high temperature did not coincide with the reduction in A rates. Decline in A rates at high temperature was more related to changes in Fv/Fm than to g S activity. The optimal temperature for vegetative growth was 30/25 °C. Reduction in A rate at high temperature resulted in reduction in total leaf area (LA), shoot, root, and leaf biomasses. Strawberry roots were more responsive than shoot growth to temperatures above 20/15 °C. Fruit yield for `Chandler' was higher at 20/15 °C than at 30/25 °C, suggesting that `Chandler' might have a higher source-to-sink relationship at 20/15 °C than at 30/25 °C. Fruit skin color was temperature dependent only for `Chandler'. A quadratic relationship between flower development and duration of exposure to 30/25 °C for both cultivars was observed; more than two weeks of 30/25 °C can be detrimental to flower development. Regardless of the cultivar and duration of exposure, 40/35 °C was the temperature regime most detrimental to fruit set.

Free access

Damage and capacity to recover of photosystem II (PSII) from long exposures to heat stress were investigated in grapes using chlorophyll fluorescence. Two wine grapes, Vitis aestivalis Michx. cv. ‘Cynthiana’ and French-American hybrid ‘Vignoles’ (Vitis L. hybrid), were exposed to a sudden heat shock (SHS) and a gradual heat shock (GHS) at 40/35 °C. After heat stress, plants were moved to a greenhouse to allow PSII to recover from heat treatments. Changes in maximum quantum efficiency of PSII, indicated by the ratio of variable fluorescence and maximum fluorescence (Fv/Fm), were observed after 3, 6, and 12 days of heat stress and after 3, 7, 14, and 21 days recovery periods of damage to PSII. Total leaf area (LA) and leaf, shoot, and root biomass were determined at the end of the experiment. Regardless of the heat treatment, increasing duration of exposure to high temperature caused a decline in Fv/Fm in both cultivars. Heat stress treatments also caused a progressive decline in LA as well as leaf and shoot biomass. Maximum quantum efficiency of PSII was observed after 3 days of exposure in both cultivars, regardless of the heat stress treatment. ‘Vignoles’, however, showed higher PSII photochemical efficiency 12 days after heat exposure. GHS was less detrimental to PSII compared with SHS heat treatment. The damaged PSII of ‘Vignoles’ recovered faster than that of ‘Cynthiana’. A positive relationship was observed between Fv/Fm and LA of plants exposed to heat treatments. Based on Fv/Fm values, this study indicates that PSII of ‘Vignoles’ is more thermostable and can recover faster than that of ‘Cynthiana’ leaves, regardless of the heat treatment. These results suggest that ‘Vignoles’ is generally more heat-tolerant than ‘Cynthiana’ and changes in Fv/Fm ratio under heat stress conditions could be a good indicator for screening heat-resistant grape cultivars.

Free access

This study evaluated the response of rose to different herbicides applied as simulated drift. Chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide}, thifensulfuron {3[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]amino]sulfonyl]-2-thiophenecarboxylic acid}, bromoxynil(3,5-dibromo-4-hydroxybenzonitrile), 2,4-D[(2,4-dichlorophenoxy)acetic acid], glyphosate [N-(phosphonomethyl) glycine], and a combination of 2,4-D and glyphosate were applied over the top of established rose plants at 1/3, 1/10,1/33, and 1/100 of the maximum labeled rate for grains. All herbicides injured rose. The greatest injury was from chlorsulfuron and 2,4-D, and the least injury was from bromoxynil and glyphosate. Plants recovered from the injury caused by all treatments except for the highest rates of chlorsulfuron and 2,4-D, which continued to show significant injury at the end of the growing season. Although all herbicides had characteristic symptoms, some of these were very similar to those caused by other stresses. Therefore, because of the potential ambiguity of visual symptoms, any allegation about herbicide drift should be based on a report of all symptoms and should be supported by residue analysis.

Full access

Broadleaf weed control with trifluralin, oxyfluorfen, pendimethalin, clopyralid, pyridate, and metolachlor in cabbage (Brassica oleracea L.) grown for seed was evaluated. No single herbicide controlled broadleaf weeds adequately, with the exception of pendimethalin at 1.92 and 3.84 kg a.i./ha. However, combinations of trifluralin + oxyfluorfen, pendimethalin + clopyralid, and oxyfluorfen + pyridate effectively controlled weeds and did not reduce seed yields. Herbicides caused slight to moderate injury symptoms to cabbage plants, with the greatest injury caused by pendimethalin and the least by trifluralin and metolachlor. However, plants recovered from these symptoms and appeared normal at the bud stage. None of the herbicides applied alone or in combinations adversely affected cabbage population, height, or flowering date. Chemical names used: 3,6-dichloro-2-pyridinecarboxylic acid (clopyralid); 2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide (metolachlor); 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene (oxyfluorfen); N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin); O-(6-chloro-3-phenyl-4-pyridazin-yl)S-octylcarbonothioate (pyridate); 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)benzenamine (trifluralin).

Free access

Glyphosate has been widely used to control annual, perennial, and biennial weeds including Conyza species. Conyza sumatrensis (Sumatran fleabane) is considered a highly invasive and troublesome weed worldwide, including in European and Mediterranean regions. In Turkey, the use of glyphosate in orchards has recently increased; however, extensive use of glyphosate has resulted in poor control of C. sumatrensis in several peach orchards. The objectives of this research were to determine if C. sumatrensis is resistant to glyphosate and identify alternative herbicides with different modes of action that can be used instead of glyphosate. Two dose response studies were conducted in the greenhouse to evaluate the response of four C. sumatrensis populations to glyphosate, chlorsulfuron, and metribuzin. Glyphosate isopropyl amine and glyphosate potassium was applied at 0, 0.25, 0.5, 1, 2, 4, and 8 times the use rate of 1080 g a.e./ha (a.e. indicates acid equivalent) when the plants were at rosette (5–6 true leaves) and vegetative (20–22 cm tall) stages. Effects of both glyphosate formulations were combined. The resistant populations showed higher resistance 3.8 to 6.6 and 5.3 to 7.8 times at rosette stage and vegetative stage, respectively, compared with the susceptible population. Furthermore, glyphosate-resistant populations were treated with chlorsulfuron and metribuzin at 0, 0.25, 0.5, 1, 2, 4, and 8 times use rate of 7.5 and 350 g a.i./ha, respectively at the rosette stage. The glyphosate-resistant populations exhibited 2.4 to 3.8 times more resistance to chlorsulfuron, but were adequately controlled with metribuzin.

Free access

Grape growers are concerned about the potential impact of drift from commonly used auxinic herbicides. In California, this is frequently related to herbicides used in cereals and noncrop areas, whereas in other parts of the United States concerns are often related to dicamba- and 2,4-D-resistant cropping systems. Our objective was to compare the relative sensitivity of winegrapes to simulated auxinic herbicide drift, including grapevine symptomology, grape yield, and grape quality. In a small-plot herbicide evaluation, we applied 1/900×, 1/300×, 1/100×, and 1/33× rates of 2,4-D, aminopyralid, dicamba, and triclopyr based on 1× field rates of 1454, 122.5, 280, and 2240 g⋅ha–1 ae, respectively. Aminopyralid resulted in similar symptomology to 2,4-D and dicamba—namely, leaf cupping, leaf crinkling, excessive tendril twisting, and tendril death, although these symptoms were generally subtle. Triclopyr resulted in much greater levels of necrosis compared with the other herbicides. In our study, triclopyr was the only herbicide associated with grape yield loss, and greater triclopyr rates were also associated with increased grape sugar levels. This study demonstrates that grapes are sensitive to low rates of simulated herbicide drift, but symptoms do not necessarily indicate yield loss or quality effects. This study indicates that auxin-type herbicide simulated drift symptoms are not reliable markers for winegrape yield or quality reduction.

Open Access

Methyl bromide (MeBr) was identified as a stratospheric ozone depletory; therefore, the use of MeBr was phased out in the United States in 2005. Chloropicrin (CP) and allyl isothiocyanate (AITC) are MeBr replacements. A mixture of CP and AITC is commonly applied to broaden the pest control spectrum. These two fumigants have low soil mobility; however, their efficacy could be improved if their soil mobility were enhanced. This research was conducted to study the effects of surfactants applied at 5% (v/v) for CP mobility and AITC mobility in soils. Mobility of the CP/AITC mixture applied with a nonionic surfactant comprising oleic, linoleic, and palmitic acids (nonionic-1) and mobility of the CP/AITC mixture applied with a nonionic surfactant comprising C9 hydrocarbon aromatics and calcium alkylarylsuphonate (nonionic-2) were compared with mobility of the CP/AITC mixture applied without surfactants in three soils (Elder sandy loam, Chualar loam, and Blanco clay loam) during a laboratory study. Nonionic-1 surfactant increased the concentration of total leachate collected for AITC by five and CP by 11 compared with CP/AITC applied alone. Surfactants may influence the fumigant mobility in soil by affecting the sorption/desorption equilibrium. Our research suggested that increased AITC mobility and CP mobility in soil with the addition of adding nonionic-1 surfactant may be due to the adsorption behavior of the surfactant in the soil and the solubilizing capability of the surfactant with pesticides.

Free access

Walnut (Juglans regia) and rice (Oryza sativa) are among the most important crops grown in the Sacramento Valley of California. Because rice herbicides are often applied by air, there are occasional allegations of rice herbicide drift onto walnut trees. This study was established to investigate bispyribac-sodium residues on walnut leaves after simulated drift treatments. The objectives were to determine whether bispyribac-sodium can generate visual symptoms on walnut trees without leaving detectable residues in leaf tissues and to evaluate the subsequent impacts on walnut yield. Two experiments were conducted in a 3-year-old walnut orchard. In the first experiment bispyribac-sodium was applied to walnut trees at 0.125%, 0.25%, 0.5%, and 1% of the normal use rate in rice (45 g·ha−1). In the second experiment, rates were 1%, 3%, 10%, and 100% of the normal use rate in rice. Bispyribac-sodium caused general leaf chlorosis and discrete yellow spotting on walnut leaves even at very low concentrations; symptoms were recorded on trees exposed to rates as low as 0.125% of the normal use rate in rice. However, based on high-performance liquid chromatography analysis, the lowest simulated drift treatment from which bispyribac-sodium could be detected 10 d after treatment was 1% of the rice use rate. In general, visual injury symptoms remained constant over time, or even worsened, whereas bispyribac-sodium residues decreased or became not detectable. There was no measurable impact on walnut yield from any of the simulated drift treatments in these experiments.

Open Access