Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Karrie Reid x
Clear All Modify Search

University of California (UC) researchers have been involved in research and extension pertaining to measuring evapotranspiration (ET) rates and determining the minimum irrigation requirements of landscape plants for more than 30 years. Early work included the design and implementation of the California Irrigation Management Information System (CIMIS) weather station network and determining crop coefficients for warm and cool season turfgrasses based on historical ET and CIMIS data. Other researchers determined the minimum irrigation requirements for several species of established landscape trees, shrubs, and groundcovers in diverse climate zones throughout the state. In addition, the Water Use Classification of Landscape Species (WUCOLS) system was developed by UC personnel in the early 1990s which, to date, has classified more than 3500 landscape species into very low, low, moderate, and high water-use categories based on observation and personal experience by industry experts and UC personnel. Future work in the area of landscape water use and conservation will include updating WUCOLS as more data from replicated trials become available. New research at UC Riverside aims to improve irrigation efficiency (IE) through precision irrigation using smart controllers, remote sensing, and geospatial analysis under controlled conditions. Irrigation training and certification for public and private landscape managers must remain a priority because, even with advanced smart controller technologies, water savings will not occur with poorly designed and functioning irrigation systems.

Full access

Increased urban and suburban populations in the arid western United States have resulted in more water demand; however, water availability in the region has become limited because of inadequate precipitation. Recent droughts have led to restrictions on irrigating landscape plants. Garden rose (Rosa ×hybrida) is commonly used as flowering plants in residential landscapes, but its drought tolerance has not been widely studied. The objective of this study was to determine the impact of reduced irrigation frequency on visual quality, plant growth, and physiology of five garden rose cultivars, including ChewPatout (Oso Easy® Urban Legend®), Meibenbino (Petite Knock Out®), MEIRIFTDAY (Oso Easy® Double Pink), Overedclimb (Cherry Frost™), and Radbeauty (Sitting Pretty™). Twenty-four plants of each rose cultivar were established in a trial plot at Utah Agricultural Experiment Station Greenville Research Farm (North Logan, UT, USA) in Summer 2021. Plants were randomly assigned to one of three deficit irrigation treatments for which irrigation frequencies were calculated using 80% reference evapotranspiration (ETO) (high), 50% ETO (medium), and 20% ETO (low). The total volumes of irrigation water applied to each plant were 345.6, 172.8, and 43.2 L for the high, medium, and low irrigation frequencies, respectively, during the deficit irrigation trial from 12 May to 30 Sep 2022. Root zones were wetted more frequently as irrigation frequency increased from low to high irrigation frequencies. Decreased irrigation frequency increased the number of visibly wilted and damaged leaves on all rose cultivars. However, only ‘Meibenbino’ and ‘MEIRIFTDAY’ exhibited a reduction in overall appearance under decreased irrigation frequency. The relative growth indices of both ‘Meibenbino’ and ‘MEIRIFTDAY’ decreased by 6%, whereas the dry weights of their leaves decreased by 37% and 36%, respectively, as irrigation decreased from high to low frequencies. Roses in this study appeared to decrease stomatal conductance up to 51% when irrigation decreased from high to low frequencies, or when air temperature increased. ‘Meibenbino’ and ‘MEIRIFTDAY’ exhibited unacceptable overall appearance, growth reduction, and higher leaf–air temperature differences, and they were less tolerant to reduced irrigation. Although the ‘Radbeauty’ maintained plant growth under the reduced irrigation frequency, the large leaf size led to a more visibly wilted appearance and the potential for heat stress, thus impairing visual quality. ‘ChewPatout’ and ‘Overedclimb’ were most tolerant to deficit irrigation at 20% ETO and maintained plant growth with acceptable visual quality and lower leaf temperatures when they received one irrigation during the growing season.

Open Access