Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Karl V. Wood x
Clear All Modify Search
Free access

S. Mark Goodwin, Christopher J. Edwards, Matthew A. Jenks and Karl V. Wood

The fungal pathogen Diplocarpon rosae causes rose blackspot disease, a serious problem for roses (Rosa) in the managed landscape. To prevent this disease, homeowners and professional growers often apply chemical fungicide. However, increased use of fungicides poses an environmental hazard and an economic burden to the user. New landscape rose cultivars like ‘Knockout’ possess increased disease resistance, but the biological basis for this resistance is still unknown. To investigate the potential role of leaf cuticle in blackspot resistance in rose, five rose cultivars known to vary greatly in blackspot resistance were examined for variation in the major lipids of the leaf cuticle, specifically the monomers of the cutin polyester and the free cuticular waxes. This is the first report of cutin monomers in the Rosa genera. The rose cultivars selected for this study were ‘Knockout’, ‘Mister Lincoln’, ‘Garden Party’, ‘Purple Passion’, and ‘Bicolor’. ‘Knockout’ and ‘Garden Party’ had significantly lower total cutin monomer amount per leaf area than the other cultivars, whereas the most cutin monomers were observed on ‘Purple Passion’, ‘Bicolor’, and ‘Mister Lincoln’. Five major cutin monomers (mostly hydroxylated 16 carbon fatty acids) dominated the cutin profiles of both adaxial and adaxial surfaces of all cultivars, with the 10,16-dihydroxy hexadecanoic acids being most abundant. The proportion of 10,16-dihydroxy hexadecanoic acids was slightly higher in the adaxial than abaxial leaf cuticles of all cultivars. Correspondingly, other cutin monomers were relatively lower in the adaxial cuticle, except 16-hydroxy hexadecanoic acid that differed little. Uniquely, this is the first report of cutin monomer composition of isolated abaxial and adaxial leaf cuticles of any plant. Total leaf cuticular wax amounts were lowest on ‘Purple Passion’ and ‘Knockout’, intermediate in ‘Mister Lincoln’ and ‘Garden Party’, and highest on ‘Bicolor’, with alkanes as the most abundant wax class. Consistent with previously published disease susceptibility ratings, our visual scores showed that ‘Knockout’ was most resistant to blackspot pathogen infection with a visual disease rating score of 1.0, followed by ‘Mister Lincoln’ at 1.8, ‘Garden Party’ at 5.4, ‘Bicolor’ at 7.5, and ‘Purple Passion’ with the most visible disease damage at 8.8. Regression analysis revealed that the alkane and ester proportions were most closely associated with blackspot disease susceptibility ratings, being inversely (R2 = 0.63, P = 0.05) and directly (R2 = 0.81, P = 0.05) correlated, respectively. More studies on the role of cuticle in rose susceptibility to blackspot are now clearly warranted.

Free access

Matthew A. Jenks, Carole H. Gaston, Mark S. Goodwin, Jessie A. Keith, Rebecca S. Teusink and Karl V. Wood

Cuticular waxes were analyzed on abaxial and adaxial leaf surfaces of three Hosta genotypes differing in leaf surface glaucousness; the glossy-leaved Hosta plantaginea, the glossy-leaved Hosta lancifolia, and the glaucous-leaved Hosta `Krossa Regal'. All three hosta had their highest total leaf wax quantity in the spring soon after full leaf expansion. The major wax constituent class on these hosta was primary alcohols, comprising up to 84.6% of the total wax. Many hosta leaves had unusually high C24 length primary alcohols, especially in the spring. However, the dominant chain length in this alcohol class varied with development and genotype. A unique class of ß-diketones were present on the glaucous `Krossa Regal', comprising as much as 28.7% of the total waxes on abaxial leaf surfaces in the summer. Interestingly, these ß-diketones were only 0.9% of total waxes on adaxial leaf surfaces of `Krossa Regal' in the summer. Studies are under way to determine whether the dramatic seasonal changes in the waxy leaf coatings described in this report are associated with biotic and abiotic stress resistance in hosta.