Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Karen Lewis x
Clear All Modify Search

Advances in horticultural production technology are often hindered by slow grower adoption. Low adoption rates are largely the product of skepticism, which can lead to weaknesses in the commercialization process and affect future research and product development. To better understand industry concerns and design effective outreach methods, an information technology survey was designed as part of the U.S. Department of Agriculture Specialty Crop Research Initiative project titled Comprehensive Automation for Specialty Crops (CASC). This study outlines the survey results from 111 participants at tree fruit meetings in the Pacific northwestern and eastern United States in 2009. Many of the misgivings about new automated technologies, such as equipment cost and reliability of harvest assist, sensor systems, and fully automated harvest machinery, were consistent across the country. Subtle differences appeared between the eastern U.S. and Pacific northwestern U.S. responses, including justifiable equipment price points and irrigation and pest concerns; these are likely attributable to regional differences in climate, operation size and scale, and marketing strategies. These survey data will help the project team better address grower concerns and uncertainty on a regional and national level, thereby improving adoption speed and rates after CASC-developed technologies are rolled out.

Free access

Advances in precision agriculture technologies provide opportunities to improve the efficiency of agricultural production systems, especially for high-value specialty crops such as fresh apples (Malus domestica). We distributed an online survey to apple growers in Washington, New York, and Michigan to elicit stakeholder perceptions of precision agriculture technologies. Findings from this study demonstrated that growers are willing to adopt precision agriculture technologies when they receive results from applied research projects and are engaged with active extension programs. The availability of customized services and purchasing and rental options may minimize the effects of the economies of size that create barriers to adopting increasing access to technologies. Finally, respondents deemed collaborative efforts between industry and academic institutions crucial for adapting the innovation to better address the needs of growers.

Open Access

Zoysiagrass (Zoysia sp.) is used as a warm-season turfgrass for lawns, parks, and golf courses in the warm, humid and transitional climatic regions of the United States. Zoysiagrass is an allotetraploid species (2n = 4x = 40) and some cultivars are known to easily self- and cross-pollinate. Previous studies showed that genetic variability in the clonal cultivars Emerald and Diamond was likely the result of contamination (seed production or mechanical transfer) or mislabeling. To determine the extent of genetic variability of vegetatively propagated zoysiagrass cultivars, samples were collected from six commercially available zoysiagrass cultivars (Diamond, Emerald, Empire, JaMur, Meyer, Zeon) from five states (Arkansas, Florida, Georgia, North Carolina, Texas). Two of the newest cultivar releases (Geo and Atlantic) were to serve as outgroups. Where available, one sample from university research plots and two samples from sod farms were collected for each cultivar per state. Forty zoysiagrass simple sequence repeat (SSR) markers and flow cytometry were used to compare genetic and ploidy variation of each collected sample to a reference sample. Seventy-five samples were genotyped and an unweighted pair group method with arithmetic mean clustering revealed four groups. Group I (Z. japonica) included samples of ‘Meyer’ and Empire11 (‘Empire’ sample at location #11), Group II (Z. japonica × Z. pacifica) included samples of ‘Emerald’ and ‘Geo’, Group III (Z. matrella) included samples of ‘Diamond’ and ‘Zeon’, and Group IV (Z. japonica) consisted of samples from ‘Empire’, ‘JaMur’, ‘Atlantic’, and Meyer3 (‘Meyer’ at sample location #3). Samples of ‘Empire’, ‘Atlantic’, and ‘JaMur’ were indistinguishable with the markers used. Four samples were found to have alleles different from the respective reference cultivar, including two samples of ‘Meyer’, one sample of ‘Empire’, and one sample of ‘Emerald’. Three of these samples were from Texas and one of these samples was from Florida. Three of the four samples that were different from the reference cultivar were university samples. In addition, one sample, Empire11, was found to be an octoploid (2n = 8x = 80). For those samples that had a fingerprint different from the reference cultivar, contamination, selfing, and/or hybridization with other zoysiagrasses may have occurred.

Free access