Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Karen Harris-Shultz x
Clear All Modify Search

The release of the bermudagrass (Cynodon spp.) triploid hybrid ‘Tifgreen’ revolutionized southeastern U.S. golf course greens. Off-types within this cultivar began to be identified soon after the initial plantings, and through the last 50 years, many of the best performing off-types have been released as new cultivars. Examination of some of the most popular somatic mutants with a new set of 47 simple sequence repeat (SSR) markers and 23 previously discovered genomic SSR markers identified five polymorphic fragments (as compared with ‘Tifgreen’) among three cultivars, TifEagle, MiniVerde, and Tifdwarf. Each polymorphism appears to be a slight increase/decrease in microsatellite repeat number and the polymorphic fragments are unique for each cultivar. Two polymorphic fragments were identified that were unique to ‘Tifdwarf’, one polymorphic fragment was unique to ‘TifEagle’, and two polymorphic fragments were unique to ‘MiniVerde’. Furthermore, three of the five polymorphic markers display an additional allele only in the shoot tissue but not in the root tissue of ‘TifEagle’ and ‘Tifdwarf’. This finding suggests that ‘TifEagle’ and ‘Tifdwarf’ are somatic chimeras. This set of SSR markers identifies repeatable polymorphic fragments among multiple ‘Tifgreen’-derived cultivars and gives insight into the nature of the mutations that exist within ‘Tifgreen’.

Free access

Genetic linkage maps of bermudagrass (Cynodon spp.) species using 118 triploid individuals derived from a cross of T89 [C. dactylon (2n = 4x = 36)] and T574 [C. transvaalensis (2n = 2x = 18)] were enriched with expressed sequence tags-derived simple sequence repeat (EST-SSR) markers. Primers were developed from 53 ESTs containing SSRs producing 75 segregating markers from which 28 could be mapped to the T89 and T574 genetic maps. With the addition of previously generated marker data, 26 T89 linkage groups and eight T574 linkage groups were formed using a log-of-odds (LOD) value of 4.0. The T89 and T574 linkage maps spanned 1055 cM and 311.1 cM and include 125 and 36 single-dose amplified fragments (SDAFs), respectively. Many of the SDAFs displayed disomic segregation and thus T89 may be a segmental allotetraploid or an allotetraploid. The additional EST-SSR markers add value to the maps by increasing marker density and provide markers that can be easily transferred to other bermudagrass populations. Furthermore, EST-SSRs can be immediately used to assess genetic diversity, identify non-mutated cultivars of bermudagrass, confirm pedigrees, and differentiate contaminants from cultivars derived from ‘Tifgreen’.

Free access

Little bluestem (Schizachyrium scoparium) is a perennial bunchgrass that is native to North American prairies and woodlands from southern Canada to northern Mexico. Originally used as a forage grass, little bluestem is now listed as a major U.S. native, ornamental grass. With the widespread planting of only a few cultivars, we aimed to assess the ploidy level and genetic diversity among some popular cultivars and accessions in the U.S. Department of Agriculture National Plant Germplasm System collection. Ten microsatellite markers, with successful amplification, were developed by using sequences available in Genbank and additional simple sequence repeat (SSR) markers were generated by using ion torrent sequencing of a genomic library created from the cultivar The Blues. A total of 2812 primer sets was designed from high-throughput sequencing, 100 primer pairs were selected, and 82 of these primers successfully amplified DNA from the Schizachyrium accessions. Only 35 primer pairs, generating 102 scored fragments, were polymorphic among S. scoparium accessions. Twenty-two primer pairs generated more than four fragments per accession. The use of a repetitive sequence identifier found that of 117 examined sequences, only nine sequences did not have similarity to DNA transposons, retrotransposons, viruses, or satellite sequences. The most frequently identified fragments were the long terminal repeat retrotransposons Gypsy (177 fragments) and Copia (98 fragments) and the DNA transposon EnSpm (60 fragments). Using the software program Structure, cluster analysis of the SSR data for S. scoparium revealed four groups. The lowest genetic similarity between little bluestem samples was 86%, which was surprising as a high degree of morphological variation is seen in this species. Furthermore, no variation in ploidy level was seen among little bluestem samples. These microsatellite markers are the first sequence-specific markers designed for little bluestem and can serve as a resource for future genetic studies.

Free access

Seashore paspalum is a salt tolerant, predominately diploid (2n = 2x = 20) species that is well adapted to coastal regions in tropical and subtropical environments. Because a majority of the available cultivars are propagated vegetatively and most genotypes are cross-fertile, a sterile cultivar that does not produce segregating seedlings would benefit sod growers and turfgrass managers who demand uniformity for certification and performance. Therefore, an experiment was conducted to create a colchicine-induced polyploid seashore paspalum. One triploid (2n = 3x = 30) genotype (11-TSP-1) was identified and remains stable. Although there is a possibility that this event was triggered by the colchicine treatment, a more likely explanation is that it resulted from the union of a reduced and an unreduced gamete. Pollen shed was observed from 11-TSP-1 in 2011, but individual pollen grains stained with iodine–potassium iodide were irregularly shaped and typically had lower starch content than pollen from several diploid cultivars. The leaf width of 11-TSP-1 was statistically equal to that of the seashore paspalum cultivar SeaStar, indicating its potential for use as a fine turf. 11-TSP-1 had both superior visual color and a dark green color index when compared with ‘SeaStar’. Future study of the reproductive fertility and more extensive field testing of this genotype should be carried out to determine its turfgrass potential. Chemical names used: 4′, 6-diamidino-2-phenylindole (DAPI), dimethyl sulfoxide (DMSO), iodine-potassium iodide (I2-KI), propidium iodide (PI).

Free access

Zoysiagrass (Zoysia sp.) is used as a warm-season turfgrass for lawns, parks, and golf courses in the warm, humid and transitional climatic regions of the United States. Zoysiagrass is an allotetraploid species (2n = 4x = 40) and some cultivars are known to easily self- and cross-pollinate. Previous studies showed that genetic variability in the clonal cultivars Emerald and Diamond was likely the result of contamination (seed production or mechanical transfer) or mislabeling. To determine the extent of genetic variability of vegetatively propagated zoysiagrass cultivars, samples were collected from six commercially available zoysiagrass cultivars (Diamond, Emerald, Empire, JaMur, Meyer, Zeon) from five states (Arkansas, Florida, Georgia, North Carolina, Texas). Two of the newest cultivar releases (Geo and Atlantic) were to serve as outgroups. Where available, one sample from university research plots and two samples from sod farms were collected for each cultivar per state. Forty zoysiagrass simple sequence repeat (SSR) markers and flow cytometry were used to compare genetic and ploidy variation of each collected sample to a reference sample. Seventy-five samples were genotyped and an unweighted pair group method with arithmetic mean clustering revealed four groups. Group I (Z. japonica) included samples of ‘Meyer’ and Empire11 (‘Empire’ sample at location #11), Group II (Z. japonica × Z. pacifica) included samples of ‘Emerald’ and ‘Geo’, Group III (Z. matrella) included samples of ‘Diamond’ and ‘Zeon’, and Group IV (Z. japonica) consisted of samples from ‘Empire’, ‘JaMur’, ‘Atlantic’, and Meyer3 (‘Meyer’ at sample location #3). Samples of ‘Empire’, ‘Atlantic’, and ‘JaMur’ were indistinguishable with the markers used. Four samples were found to have alleles different from the respective reference cultivar, including two samples of ‘Meyer’, one sample of ‘Empire’, and one sample of ‘Emerald’. Three of these samples were from Texas and one of these samples was from Florida. Three of the four samples that were different from the reference cultivar were university samples. In addition, one sample, Empire11, was found to be an octoploid (2n = 8x = 80). For those samples that had a fingerprint different from the reference cultivar, contamination, selfing, and/or hybridization with other zoysiagrasses may have occurred.

Free access

Seashore paspalum (Paspalum vaginatum Swartz) is a warm-season turfgrass species primarily used on golf courses and athletic fields, and is often impacted by the disease dollar spot caused by Sclerotinia homoeocarpa F.T. Bennett. Dollar spot is the most common and economically important turfgrass disease in North America, and current management of this disease relies heavily on frequent fungicide applications. An alternate management strategy is host plant resistance, but a better understanding of the interactions between pathogen isolates and the host species is needed to effectively incorporate this resistance into elite seashore paspalum genotypes. The goal of this study was to gather host plant/isolate response data that could be used to develop an effective and efficient screening protocol for resistance to this important disease. Five genotypes of seashore paspalum (‘Aloha’, ‘SeaIsle 2000’, ‘SeaIsle 1’, ‘SeaIsle Supreme’, and 05-1743) varying in dollar spot resistance were inoculated with five isolates of S. homoeocarpa in repeated field studies during 2012 and 2013. Isolates used were from three warm-season and one cool-season turfgrass species. Inoculated plots were evaluated visually and using digital image analysis (DIA) for disease development over time and for number and area of infection centers at two rating dates each year. Statistical differences among the seashore paspalum genotypes and inoculation/isolate treatments were detected for area under the disease progress curve (AUDPC) values, number of infection centers, and infection center area. A significant interaction between seashore paspalum genotype and S. homoeocarpa isolate effects was not observed, indicating that host plant resistance genes are likely not isolate specific. Using this information, breeders should be able to use one highly virulent S. homoeocarpa isolate to screen for host plant resistance in seashore paspalum.

Free access