Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Kai Zhou x
Clear All Modify Search

The autointoxication of chrysanthemum was studied using water extract of Dendranthema morifolium's rhizospheric soil. Results of bioassays showed that the water extract inhibited chrysanthemum seed germination and the activities of some important root enzymes. The seedling nitrate reductase activity was decreased linearly with increasing concentration of the extract. The activity of root dehydrogenase was inhibited only at the highest concentration tested [3.2 g·mL-1, dry weight (DW)], but was stimulated at a lower concentration tested (1.6 g·mL-1, DW). Malondialdehyde content increased at higher than 1.6 g·mL-1, DW concentrations of the extract. The autointoxication phenomenon might be related to the difficulties in continuous plantings of chrysanthemum at the same location.

Free access

Root and foliar applications of 24-epibrassinolide (EBL), an immobile phytohormone with antistress activity, were evaluated for their effects on reducing fusarium wilt and their influence on antioxidant and phenolic metabolism in roots of cucumber plants (Cucumis sativus L. cv. Jinyan No. 4). EBL pretreatment significantly reduced disease severity together with improved plant growth and reduced losses in biomass regardless of application methods. EBL treatments significantly reduced pathogen-induced accumulation of reactive oxygen species (ROS), flavonoids, and phenolic compounds, activities of defense-related and ROS-scavenging enzymes. The enzymes included superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase as well as phenylalanine ammonia-lyase and polyphenoloxidase. There was no apparent difference between two application methods used. EBL applications triggered a slight increase in H2O2 concentration followed by increases in the transcript levels of WRKY transcription factor and defense-related genes. This study demonstrated that EBL enhanced resistance to fusarium wilt by a novel mechanism that was not related to its active transport or increase in antioxidant system.

Free access

Chimonanthus praecox (wintersweet) is endemic to China. It has been cultivated there for more than 1000 years as a garden, potted, and cut-flower plant. Many cultivars have been developed during its long history of cultivation, and recently many germplasms were collected in Wuhan and Nanjing, China. The identification and genetic relationship of these resources were studied based mainly on morphological traits. In the current study, intersimple sequence repeat markers (ISSR) and random amplified polymorphic DNA markers (RAPD) were used for the first time to investigate 72 wintersweet clones from the two regions. Eleven ISSR primers amplified 115 bands, 90 (78.26%) of which were polymorphic. Nineteen RAPD primers amplified 165 bands, 105 (63.63%) of which were polymorphic. Either ISSR or RAPD markers were sufficient to distinguish all the clones surveyed. A Dendrogram based on Jaccard's similarity coefficients indicated that the distribution pattern of the 72 clones was coherent with their geographical origins. Most of the genetic variation (85.68% with ISSR data; 86.75% with RAPD data) occurred among clones within each region. However, the difference between Wuhan and Nanjing groups is statistically significant (ΦST = 0.143, P < 0.001, with ISSR data; ΦST = 0.132, P < 0.001, with RAPD data). Morphological variation and classification of wintersweet cultivars were also discussed compared with the genetic relationship based on ISSR and RAPD markers. This is the first report of the partitioning of genetic variability within and between different cultivated wintersweet regions, and it provides useful baseline data for optimizing sampling strategies in breeding. These results are important for future genetic improvement, identification, and conservation of Chimonanthus praecox germplasm.

Free access