Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Kai Zhang x
Clear All Modify Search

The addition of pulverized grape pruning wood to grape soils has a positive effect on fruit quality. However, its effects on the soil microecology of the root zone and the growth of the grape plants are not fully understood. To address this, ‘Shine Muscat’ grapes were cultivated in media consisting of garden soil and crushed grape pruning material at different mass ratios [100:1 (T1), 50:1 (T2), 30:1 (T3), 20:1 (T4), and 10:1 (T5)] and in garden soil without the pruning material, as a control. The changes in the plant fresh weight, leaf area, soil and plant analyzer development (SPAD) value, root development, soil organic carbon, microbial biomass carbon, and soil enzyme activity were determined over time. High-throughput sequencing technology was used to determine the soil bacterial community structures. The pruning supplementation increased the grape plants fresh weight, leaf area, and SPAD values. The T2 and T3 treatments increased the grape root length, surface area, and the projected area and number of the root tips; the soil organic carbon content, microbial biomass carbon content, soil invertase activity, amylase activity, and β-glucosidase activity were also significantly increased. The addition of the grape pruning material was found to increase the bacterial diversity and richness 60 and 150 days after treatment. At the phylum level, Proteobacteria, Acidobacteria, and Actinobacteria were the dominant groups, and the grape pruning material increased the relative abundance of the Acidobacteria and Actinobacteria after 60 and 150 days. The relative abundance of the Actinobacteria in the T2 treatment was 1.7, 1.3, 1.5, and 1.3 times that of the control, after 60, 90, 120, and 150 days, respectively. The T2 treatment was identified as the optimal treatment for grapes in the field because it improved the soil microecology and promoted root and tree development the most compared with the other treatments tested.

Open Access

GA20-oxidase (GA20-ox) is a key enzyme involved in the biosynthesis of gibberellic acid (GA). To investigate its role in plant growth and development, we suppressed MdGA20-ox gene expression in apple (Malus domestica cv. Hanfu) plants by RNA interference (RNAi). After 20 weeks of growth in the greenhouse, significant phenotype differences were observed between transgenic lines and the nontransgenic control. Suppression of MdGA20-ox gene expression resulted in lower plant height, shorter internode length, and higher number of nodes compared with the nontransgenic control. The expression of MdGA20-ox in transgenic plants was significantly suppressed, and the active GA content in transgenic lines was lower than that in the nontransgenic control. These results demonstrated that the MdGA20-ox gene plays an important role in vegetative growth, and therefore it is possible to develop dwarfed or compact scion apple cultivars by MdGA20-ox gene silencing.

Free access

Because of the growing threat of global warming, drought stress could severely affect the normal growth and development of crop plants. To alleviate such an adverse effect, there is a need to screen watermelon germplasm collections to identify genetic sources for potential drought tolerance. In the present study, 820 accessions of USDA's Citrullus PIs and 246 watermelon breeding lines were evaluated for their drought tolerance at the seedling stage under extreme water stress conditions in a greenhouse. Significant variations in drought tolerance were observed in the Citrullus germplasm collections. Using fast clustering analysis, the tested watermelon materials could be assigned into four groups, including tolerant, intermediate tolerant, moderately sensitive, and sensitive, respectively. The most drought-tolerant Citrullus germplasm, including 13 Citrullus lanatus var. lanatus and 12 C. lanatus var. citroides accessions, were originated from Africa. These genetic materials could be used for rootstock breeding or for developing drought-tolerant watermelon cultivars.

Free access

Chimonanthus praecox (wintersweet) is endemic to China. It has been cultivated there for more than 1000 years as a garden, potted, and cut-flower plant. Many cultivars have been developed during its long history of cultivation, and recently many germplasms were collected in Wuhan and Nanjing, China. The identification and genetic relationship of these resources were studied based mainly on morphological traits. In the current study, intersimple sequence repeat markers (ISSR) and random amplified polymorphic DNA markers (RAPD) were used for the first time to investigate 72 wintersweet clones from the two regions. Eleven ISSR primers amplified 115 bands, 90 (78.26%) of which were polymorphic. Nineteen RAPD primers amplified 165 bands, 105 (63.63%) of which were polymorphic. Either ISSR or RAPD markers were sufficient to distinguish all the clones surveyed. A Dendrogram based on Jaccard's similarity coefficients indicated that the distribution pattern of the 72 clones was coherent with their geographical origins. Most of the genetic variation (85.68% with ISSR data; 86.75% with RAPD data) occurred among clones within each region. However, the difference between Wuhan and Nanjing groups is statistically significant (ΦST = 0.143, P < 0.001, with ISSR data; ΦST = 0.132, P < 0.001, with RAPD data). Morphological variation and classification of wintersweet cultivars were also discussed compared with the genetic relationship based on ISSR and RAPD markers. This is the first report of the partitioning of genetic variability within and between different cultivated wintersweet regions, and it provides useful baseline data for optimizing sampling strategies in breeding. These results are important for future genetic improvement, identification, and conservation of Chimonanthus praecox germplasm.

Free access

The role of the walnut (Juglans regia L.) shell in nut development, transportation, cleaning, and storage is often ignored. The shell suture seal and thickness are directly associated with kernel characteristics. In the present study, shell differentiation and microstructure were observed with an optical microscope using paraffin-sectioning and cryosectioning. The results showed that the parenchymal cells of the endocarp began to differentiate into sclerenchymal cells from 49 d after flowering (DAF), and the entire process continued until fruit maturation. The mature shell consists of three parts, including the sclereid layer (L1), sclerenchymal cell layer (L2), and shrunken cell layer (L3), from the outside to the inside. The shell thickness, suture seal grade, and mechanical strength were evaluated, as well as the lignin, cellulose, and phenolic compounds of the shell. Suture seal grade was positively correlated with lignin content, shell thickness, and L1 thickness and negatively correlated with shell cell diameter. Similarly, the mechanical strength of the shell was positively correlated with lignin content and L1 thickness. ‘Qingxing’ fruits were subjected to two treatments, namely, 30% shading and 70% shading, from 10 d after anthesis to maturity, with no shading used as control. After harvesting in September, nutshell sections showed thinner shells, with decreased contents of lignin and polyphenols, obtained under shaded conditions, and two of the three parts of the shell changed dramatically. The thinning of L1 and thickening of L3 eventually led to a thinner shell. The aim of this study was to evaluate the relationship among the shell structure, cellular components, and physical properties and provide a theoretical basis for cultivar breeding, rational planting density, and regulation of shell development.

Free access

In the present study, the effect of plant growth regulators (PGRs) on callus regeneration, adventitious shoot differentiation, and root formation of Haworthia turgida Haw. was investigated. The greatest callus induction percentage (95.6%) was achieved with leaf explants inoculated on Murashige and Skoog (MS) medium with 1.0 mg·L−1 6-benzyladenine (BA) and 0.1 mg·L−1 1-naphthaleneacetic acid (NAA), and this callus induction medium supplemented with 2.5 mg·L−1 thidiazuron (TDZ) was optimal for callus proliferation. The maximum number of shoots (25.7) was obtained when the callus was cultured on MS medium supplemented with 1.0 mg·L−1 BA and 0.2 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D). The highest number of roots per shoot (6.2) and highest rooting frequency (82.0%) were obtained when adventitious shoots were inoculated on MS medium with 0.05 mg·L−1 NAA. Regenerated plantlets were transferred to a mixture of vermiculite and soil and acclimated in a greenhouse. The survival rate of the transplanted plantlets was about 91.6%. The rate of ex vitro rooting was 83.3%, indicating that this technique is effective for root induction in H. turgida. This study has established a rapid and efficient micropropagation system that can be beneficial for commercial cultivation and germplasm conservation of H. turgida.

Free access

Salvia miltiorrhiza, known as danshen, is one of most valued medicinal plants in China. Although it has been cultivated since ancient times, an optimal culture system needs to be standardized for this important species. Here, we explored the phytochemical properties of S. miltiorrhiza with the treatments of rare earth elements (REEs) to develop an optimal tissue culture system. Four-week-old in vitro-grown S. miltiorrhiza plantlets were used as explants. The experiment was conducted in a randomized block design on a Murashige and Skoog (MS) medium containing 0.2 mg·L−1 naphthaleneacetic acid (NAA) to induce rooting at four different concentrations (50, 100, 200, and 300 μM) of REEs such as cerium (Ce), lanthanum (La), or praseodymium (Pr), respectively. Compared with all REEs at different concentrations, 100 μM Pr induced greater root length than Ce or La at any concentrations. Concomitantly, 0.38 μg tanshinone IIA/mg dry weight (DW) was observed, which was 54.84% higher than in the control. Similarly, chlorophyll content, antioxidant enzyme activity, and secondary metabolite were enhanced in rooting medium supplemented with 100 μM Pr. Therefore, this study showed that 100 μM Pr is an adequate concentration in the optimal culture system for promoting plant growth as well as enhancing secondary metabolite content in S. miltiorrhiza.

Open Access

As a result of its high photosynthetic efficiency, the tung tree (Vernicia fordii) is a fast-growing heliophile, yielding fruit within 3 years. In addition, tung oil extracted from the fruit seeds is an environmentally friendly paint used widely in China. However, mutual shading inside a tung tree canopy leads to a low yield of fruit because of weak or dead lower branches. In this project, a pot experiment was conducted to understand the growth, physiological, anatomical structure, and biochemical responses of tung trees under various shading levels. Tung tree seedlings were subjected to different light intensities—100% sunlight (no cover), L100; 75% sunlight (25% shading), L75; 50% sunlight (50% shading), L50; and 20% sunlight (80% shading), L20—from June to August. Results indicate that the L75 treatment reduced significantly the net photosynthetic rate (Pn), stomatal conductance (g S), transpiration rate (E), total aboveground and root dry weight (DW), maximum net photosynthetic rate (A max), and maximum rate of electron transport at saturating irradiance (Jmax) compared with the control, although plant height and leaf area (LA) were not reduced. Lower light intensities (L50 and L20) and longer duration of treatment led to greater reduction in growth, leaf thickness, and photosynthetic potential (A max and Jmax). Chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll content were increased in the L50 and L20 treatments compared with L100 and L75. There was no significant reduction in the enzyme activities of ribulose-1,5-bisphosphate carboxylase (Rubisco) and phosphoenolpyruvate (PEPC) of the seedlings using the L75 treatment; however, lower light intensities (L50 and L20) and longer duration of shade treatment resulted in a significant reduction in enzyme activity. In summary, the results suggest that tung trees have greater photosynthetic activity under high light intensity. Shading, even at 20%, especially for the longer term, reduced photosynthetic efficiency and growth. To prevent growth reduction, tung trees should be grown under full sun with a daily light integral (DLI) of ≈46 mol·m‒2·d‒1, and mutual shading should be avoided by proper spacing and pruning.

Free access