Search Results
A water use simulation for citrus (Citrus sinensis) was used to estimate the effects of climate, soil-available water, rooting depth, allowable depletion of available water, and partial coverage irrigation on the annual irrigation requirements. The soil in the study was excessively drained Candler sand (hyperthermic, uncoated Typic Quartzipsamments) of the Central Florida Ridge. Variation of annual rainfall from 667 to 1827 mm had a relatively small impact on annual irrigation requirements. Soil-available water, depth of root zone, and allowable depletion of available water all affected irrigation management and the number of irrigations annually. Simulated annual irrigation requirements varied over a wide range depending on the allowable depletion of soil-available water, irrigation depth, and the fraction of the land area that is irrigated. Effective rain estimated by the TR21 method during months of high rainfall was higher than estimates by the water budget. Monthly irrigation requirements varied seasonally and peaked in normally dry spring months of April and May. The irrigation simulation is a useful tool for examining the range of management strategies that can be considered for citrus.
The abscission compound CMNP (5-chloro-3-methyl-4-nitro-1H-pyrazole) was applied to fully mature sweet orange trees at different spray volumes using a vertical, multiple-fan air-blast sprayer to determine distribution of fruit loosening throughout the canopy and subsequent effects on mechanical harvester efficiency. CMNP was applied at 0, 935, 1871, and 2806 L·ha−1 in three ‘Valencia’ and one ‘Hamlin’ grove. Spray coverage was measured using water-sensitive paper and fruit loosening was measured by fruit detachment force (FDF). Spray coverage and FDF were measured at 1-, 2-, and 4-m height within the canopy and inside the canopy near the trunk and on the periphery of the canopy. Spray coverage increased with volume of CMNP applied. Spray coverage was higher at 4 m than 1 and 2 m, which were similar. Spray coverage within the canopy was decreased almost half compared with that of the periphery. FDF was unaffected by spray volume at the different heights except in one trial where fruit had higher FDF at 4 m. Fruit inside the canopy did not loosen as much as fruit outside the canopy in three of the four trials. FDF inside the canopy averaged 52 to 84 N, whereas fruit on the periphery of the canopy averaged 50 to 74 N. CMNP promoted fruit drop, but only in two trials was the amount over 5% of the total yield for the 2806-L·ha−1 treatment. The fruit were harvested by canopy shakers that captured fruit on catch frames, except one of the ‘Valencia’ trials in which the canopy shaker did not have a catch frame. The percent of the total crop removed by the harvesters increased when CMNP was applied at higher spray volumes except in the ‘Hamlin’ trial in which there was no difference among volume treatments. The percent of the total crop removed by the harvester but not captured by the catch frame increased at higher volumes of CMNP applied for two of the three trials in which catch frames were used. Fruit loss with greater volume of CMNP applied was promoted by peripheral canopy contact with the front shield of the harvester that knocked fruit down before the catch frame moved under that portion of the canopy. Recovery percentage, or the percentage of total yield that was caught and conveyed to bulk collection by the harvester catch frame, averaged 78.1% to 87.8% of total yield. Higher CMNP volume with increased removal rate compensated for higher catch frame loss, providing overall higher recovery percentage. Based on the goals of minimizing fruit drop and maximizing fruit recovery, the range of FDF that should be reached by harvest is 40 N to 65 N for canopy shakers equipped with catch frames. These trials underscore the importance of adequate CMNP coverage for reducing in-canopy variation of fruit loosening and maximizing fruit removal.
Growth and nitrogen (N) accumulation relationships based on tree size, rather than age, may provide more generic information that could be used to improve sweet orange [Citrus sinensis (L.) Osbeck] N management. The objectives of this study were to determine how orange trees accumulate and distribute biomass and N as they grow, investigate yearly biomass and N changes in mature orange trees, determine rootstock effect on biomass and N distribution, and to develop simple mathematical models describing these relationships. Eighteen orange trees with canopy volumes ranging between 2 and 43 m3 were dissected into leaf, twig, branch, and root components, and the dry weight and N concentration of each were measured. The N content of each tree part was calculated, and biomass and N distribution throughout each tree were determined. The total dry biomass of large (mature) trees averaged 94 kg and contained 0.79 kg N. Biomass allocation was 13% in leaves, 7% in twigs, 50% in branches/trunk, and 30% in roots. N allocation was 38% in leaves, 8% in twigs, 27% in branches/trunk, and 27% in roots. For the smallest tree, above-/below-ground distribution ratios for biomass and N were 60/40 and 75/25, respectively. All tree components accumulated biomass and N linearly as tree size increased, with the above-ground portion accumulating biomass about 2.5 times faster than the below-ground portion due mostly to branch growth. The growth models developed are currently being integrated in a decision support system for improving fertilizer use efficiency for orange trees, which will provide growers with a management tool to improve long-term N use efficiency in orange orchards.
This study was conducted to determine the relationship of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) concentration and canopy shaker frequency on fruit detachment force, pre-harvest fruit drop, and mechanical harvesting fruit removal of ‘Hamlin’ and ‘Valencia’ sweet orange cultivars. CMNP was applied at 0, 200, and 300 mg·L−1 in a carrier volume of 2806 L·ha−1. Four days after CMNP application, fruit were harvested with a canopy shaker that was operated at 3.0, 3.7, and 4.3 Hz at a tractor speed of 1.6 km·h−1. The experiment was repeated 3× for ‘Hamlin’ (December, early January, and late January) and twice for ‘Valencia’ (March and April) during the 2008–2009 harvest season. Fruit detachment force was reduced by at least 50% for all CMNP-treated trees compared with the untreated controls at the time of harvest and was lower for 300 mg·L−1 than 200 mg·L−1 on three of the five dates tested. Pre-harvest fruit drop evaluated immediately before mechanical harvesting was higher for all CMNP-treated ‘Hamlin’ than untreated controls at all harvest dates, whereas 300 mg·L−1 application resulted in higher pre-harvest fruit drop in ‘Valencia’ when compared with 200 mg·L−1 or the untreated controls on both application dates. CMNP-induced fruit drop was higher in ‘Hamlin’ than ‘Valencia’. CMNP had a greater effect on fruit removal at lower canopy shaker frequencies. The interaction of total fruit weight removed was not significant on any date as a result of variability among trees in the study. These data indicate that the amount of loosening by CMNP was concentration-dependent and facilitated removal, especially with lower canopy shaker frequencies. Development of viable commercial practices should use the percent of the total crop harvested and not the actual weight of fruit removed in determining efficacy of CMNP and harvest efficiency of the mechanical harvesters.