Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: K.D. Batal x
Clear All Modify Search

Abstract

Ripening of pimiento and paprika peppers (Capsicum annuum L.), tested at 2 locations, was accelerated by (2-choroethyl)phosphonic acid (ethephon) when applied close to normal fruit maturity. Potential chemical ripeners of Buckman Laboratories, BL-2142 (Poly[oxyethylene(dimethylimino)-ethylene(dimethylimino)ethylene dichloride]) and BL-2143 (Poly[hydroxyethylene(dimethylimino)-ethylene(dimethylimino)methylene dichloride]) slightly enhanced ripening of pimiento, but had little or no effect on paprika. Ethephon (1500 to 3000 ppm) applications induced defoliation and fruit abscission in pimiento and paprika, especially at later stages of fruit development. Extractable red color of dehydrated paprika was improved by ethephon and BL-2143 at 1000 mg/liter.

Open Access
Authors: and

Abstract

In field experiments, yields of pepper (Capsicum annum L.) were obtained by more frequent irrigation, nitrogen topdressings, and increased plant population. The highest marketable yield resulted when sufficient N was added to maintain soil NO3–N levels between 20 (spring) and 30 (fall) ppm. In both seasons, the number of N topdressings was doubled in order to raise the soil NO3–N maintenance levels from 10 to 20 ppm or from 15 to 30 ppm. Yield increases were influenced by frequent irrigation only when additional N was applied to maintain a higher soil NO3–N. Populations greater than 27,000 plants/ha increased marketable yields in spring and fall by 2.8 and 7.1 MT/ha respectively.

Open Access

The effects of three rates of N, Mg, and B on cauliflower (Brassica oleracea, Botrytis group) yield, average curd mass, and hollow stem disorder were evaluated on sandy and clay loam soils. Cultivars White Empress and Stovepipe were tested on the sandy loam soil and `White Empress' was tested on the clay loam soil. Maximum mean curd mass and maximum yields were obtained with the highest N rates (269 and 381 kg·ha-1) applied to sandy loam and clay loam soils, respectively. Yield response to increased N rates varied with cultivar. Increasing Mg from 22.5 to 90 kg·ha-1 did not affect yield or curd mass on clay loam soil, but increased yield and mean curd mass on sandy loam soil. The Mg effect on curd mass was influenced by N and B rates. On both soil types, the higher Mg and B rates reduced the incidence of hollow stem, but the Mg effect was influenced by N applications. On clay loam soil, increasing B from 2.2 to 8.8 kg·ha-1 reduced hollow stem but had no effect on yield or curd mass. On sandy loam soil, B at 4.4 kg·ha-1 maximized yield and curd mass, but the hollow stem disorder continued to decrease as B rates were increased from 2.2 to 8.8 kg·ha-1.

Free access

Abstract

Stress-strain measurements of the skin from fruit of 5 tomato cultivars were related to field data for fruit cracking. No relationship was found between modulus of elasticity and fruit cracking, but ultimate force and breaking elongation showed inverse relationships to fruit cracking. Breaking elongation, which reflects both elasticity and plasticity of the skin, should be of value in estimating crack resistance of tomato fruit. The Instron instrument was used to determine these mechanical properties.

Open Access

Rubber dandelion (Taraxacum kok-saghyz, Rodin) is being developed as a temperate-zone source of rubber, but best agronomic practices must be determined before it can become a viable supplement to imported rubber produced from para rubber tree (Hevea brasiliensis, hevea) plantations located mostly in Southeast Asia. In our study, the effect of planting density and harvest time on yield was determined by transplanting 1.5-month-old greenhouse-produced plants at planting densities of 1.24, 2.47, 4.94, and 9.88 million plants/ha, randomized across four planting boxes with two densities per box (i.e., two planting areas at each density). Half of each planting area was selected randomly and hand-harvested after 6 months, and the remaining plants were hand-harvested after 1 year. Rubber yields per plant were greater after 1 year than after 6 months, but yields per unit area were similar as a result of the loss of half the plants during the severe 2013–14 Ohio winter. A maximum rubber yield of 960 kg dry rubber/ha was obtained from the 9.88 million-plants/ha planting density after 1 year, but root size was significantly decreased compared with lower densities, and appeared too small for mechanical harvest. A planting density between 2.47 and 4.94 million plants/ha may produce the optimal combination of root size and total rubber yield. Greater rubber concentrations, faster-growing plants, short-season germplasm, and in-field weed control are required before yields obtained in outdoor planting boxes can be matched or exceeded on farms, especially in a direct-seeded rubber dandelion crop.

Free access

Pepper and sweet corn were tested in a rotation with crimson clover and velvet bean (Mucuna pruriens) cover crops at different locations in Georgia, North Carolina, and South Carolina from 1995 to 1996. Vegetable production with minimum-till following the cover crops was compared with two different conventional methods (following rye cover or fallow). All minimum-till/cover crop treatments caused reduction of total number of pepper fruit, compared to the conventional methods. Effects on premium grade (Fancy + U.S. #1) were similar to the effects on total fruit. The highest percentage of premium grade was produced by both conventional methods in 1996. Sweet corn responded similarly to these treatments in 1995. However, in 1996, clover plots had corn yields nearly as good as the conventional plots. As in bell pepper, plots with velvet bean cover produced lower yield in 1996. Treatment effects on number of marketable corn were the same as the effects on total ears produced.

Free access

`Jewel' sweetpotato was no-till planted into crimson clover, wheat, or winter fallow. Then N was applied at 0, 60, or 120 kg·ha–1 in three equal applications to a sandy loam soil. Each fall the cover crop and production crop residue were plowed into the soil, beds were formed, and cover crops were planted. Plant growth of sweetpotato and cover crops increased with N rate. For the first 2 years crimson clover did not provide enough N (90 kg·ha–1) to compensate for the need for inorganic N. By year 3, crimson clover did provide sufficient N to produce yields sufficient to compensate for crop production and organic matter decomposition. Soil samples were taken to a depth of 1 m at the time of planting of the cover crop and production crop. Cover crops retained the N and reduced N movement into the subsoil.

Free access

Tomatoes and beans were grown in rotation for 4 years with three cover crop treatments (bareground, wheat, and crimson clover) and three nitrogen rates (0, 60, and 120 kg N/ha). Over the course of the study, when no additional N was provided, lowest yields of tomatoes and beans were obtained with the wheat cover crop. With the highest N rate, however, there was little difference in yields of beans or tomatoes with any of the cover crop treatments. Considering the benefits associated with the use of cover crops, it is encouraging to see that with proper N amendment, yields obtained with cover crop systems can be comparable to conventional bareground systems.

Free access

Cucumber and potato crops were tested in a rotation with winter cover crops at different locations in Georgia, North Carolina, and South Carolina from 1991 to 1994. Biomass DM of vegetable crops was greatest when grown after crimson clover. Clover plantings resulted in a greater biomass than wheat when preceded spring cucumber crop. Vegetable biomass produced on clover plots or with N rates of 60 to 120 kg·ha–l was equivalent. Nitrogen recovery by cover and vegetable crops was enhanced by clover plantings. Clover biomass (tops only) provided an average of 138 kg N/ha for the cucumber crop, compared to an average of 64 kg N/ha provided by wheat. Nitrogen recovery by vegetable crops was also enhanced with 60–120 kg N/ha rates. Yields were highest when high N rates were used and when crops were produced on clover plots. Vegetable yield, cover crop biomass, and N recovery were positively correlated with vegetable biomass and applied N.

Free access

A 5-year study using winter cover crops (wheat or rye, crimson clover, and fallow) in a tomato and bean rotation indicated several soil responses to the cover crops. Advantages of crimson clover winter cover crop to the soil in a tomato-bean rotation included adding organic matter to the soil, which resulted in an increase in the amount of inorganic nitrogen in the upper levels of the soil profile and an increase in the soil's water-holding capacity. An additional benefit of winter cover crops to the soil was the potential of reduced nitrogen leaching.

Free access