Search Results
Near-lethal abiotic stresses, e.g., low or high temperatures, chemicals, etc., can break endodormancy prematurely and reduce cold hardiness in woody plants. It is not well-ducumented whether biotic stresses can cause the same effect. Botryosphaeria dothidea causes canker in redbud (Cercis canadensis) and many other woody plants and is one of the most limiting factors growing redbud in the landscape. Two-year-old seedlings were planted in a nursery in May 1998 at The Morton Arboretum. Trees were inoculated (n = 10/treatment) with the fungus in Sept. 1998 using the stem slit method (a slit was cut about 5 cm above the base of the trunk and the wound was covered with parafilm after treatment). The treatments were T1 = control (PDA, Potato Dextrose Agar),T2 = 1-mm mycelium plug, T3 = low spore suspension (25 μL), T4 = high spore suspension (25 μL). Stem cold hardiness was evaluated by artificial freezing tests in Nov. 1998. The mean LT50 (the temperature at which 50% of the tissues is killed) from ion leakage were T1 (Control) = -29.3 °C, T2 (mycelium): -24.05 °C, T3 (low spore) = -18.75 °C, and T4 (high) = -16.4 °C. T3 and T4, the low- and high-spore inoculation, significantly reduced cold hardiness in redbud stem tissues. The LST (lowest survival temperature) based on visual observation of the samples after 7 days indicated all Botryosphaeria dothidea-treated plants had lower cold hardiness compared to control. Endodormancy was broken in B. dothidea-treated plants after placing plants under 16 h of light and 23 /18 °C day/night temperature for 1 month after the treatment. The highest percent budbrealk was for T4 (high spore), followed by T3 (Low Spore) and T2 (Mycelium).
Seedlings of eight Prunus taxa were evaluated for variation in susceptibility to a single, 4- or 5-day flooding period and root rot caused by Phytophthora cryptogea Pethybr. & Lafferty. Survival, plant defoliation, disease severity index, root necrosis, and net photosynthesis indicated that the combination of flooding and pathogen was significantly more severe to all taxa than either individual treatment. Most response variables reflected early plant dysfunction but were not correlated with long-term survival. Long-term survival was 70% in the combination treatment compared to 99% in the control group. Flooding injured seedlings more than the pathogen in most taxa. Taxa differed only slightly in tolerance to the treatments, as measured by survival rate. Prunus takesimensis Nakai had the highest survival rate of 100% and along with P. mahaleb L. and P. yedoensis Matsum. showed some tolerance to flooding and the pathogen. Prunus sargentii Rehd. had the lowest survival rate of 81% and appeared to be least tolerant to the pathogen.
Upright l-year-old apple (Malus domestica Borkh. `Granny Smith') branches were headed at 14-day intervals (branches headed once each) during late winter and in spring [70 days before full-bloom (DBFB) until 28 days after full-bloom (DAFB)] and budbreak and new shoot growth quantified on the remaining branch section after cessation of these events. When heading was performed 70, 56, or 42 DBFB, four to five buds broke on average. When branches were headed subsequently, the average number of buds breaking increased progressively, then decreased with heading date, the maximum number breaking (13) on branches headed 14 DAFB. An average of 10 or 11 buds broke per branch section when heading was performed 28 DAFB. In late summer, the total length of new shoots per branch section for the branches headed before full bloom averaged 113 cm, whereas that on the branches headed at or after full-bloom averaged 76 cm.
We evaluated suitability of chemical indices of three media formulations or substrates (A, B, and C) consisting of composted pine bark, coconut coir pith, sphagnum peatmoss, processed bark ash, and perlite in varied proportions for growing northern red oak (Quercus rubra L.) seedlings. These substrates were ranked according to their ability to promote seedling growth. The low-yielding substrate (A) was devoid of pine bark and perlite and the medium-yielding substrate (B) contained no peatmoss or processed bark ash. The high-yielding substrate (C) contained all components. Additionally, we tested plant response to high nitrogen (N) fertilization on each substrate. Media EC, pH, and total dissolved solids measured at transplanting explained 68%, 43%, and 66%, respectively, of the variation in plant dry weight and 39%, 54%, and 46%, respectively, of the variation in shoot height. Vector diagnosis effectively ranked nutritional limitations on seedling growth as N > P > K. High N fertilization highlighted element deficiency in seedlings grown on substrate A, but resulted in element toxicity and antagonistic interactions in plants established on substrates B and C, respectively.