Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: K.A. Fisher x
Clear All Modify Search
Authors: and

Abstract

Grape breeding was initiated at the Horticultural Research Institute of Ontario in 1913 (3). The objectives of the breeding program were to provide wine and table grapes adapted to Ontario growing conditions. ‘Vanessa’ (Fig. 1) was released by the Horticultural Research Institute of Ontario to fill the need for seedless table grapes hardy enough to withstand winter conditions in southern Ontario. This is the seventh cultivar released from this program.

Open Access
Authors: and

Abstract

Grape breeding was initiated at the Horticultural Research Institute of Ontario in 1913 (3). The objectives of the program were to provide wine and table grapes adapted to southern Ontario climatic conditions. ‘Vivant’ (Fig. 1) was released by the Horticultural Research Institute of Ontario to help fill the need for hybrid grape cultivars with vinifera-like character for the active white wine market. This is the 8th cultivar to be released from this program.

Open Access

An assessment was made to determine the suitability of RAPD analysis for identification of the Australian wildflower Ozothamnus diosmifolius (Vent.) DC [syn. Helichrysum diosmifolium (Vent.) Sweet] cultivars and lines. Of 19 arbitrary primer sequences tested, 16 revealed a high degree of polymorphism between the six most important genotypes with commercial significance, producing a total of 166 markers, of which 70% were polymorphic. Several primers (such as OPD-03 and OPM-07) were able to distinguish all tested genotypes from one another, showing an intracultivar consistency. These results indicate that RAPD analysis is a useful tool for establishing genetic diversity in this species as well as assisting in commercial protection of plant breeders' rights.

Free access

Abstract

Cluster-thinning of the French hybrid grape cultivar ‘de Chaunac’ (Vitis sp.) resulted in superior fruit quality and an increase in vigor of the vines in comparison to the unthinned vines in a similar pruning and management regime. The higher sugar levels associated with thinning are consistently desirable for wine making under Ontario conditions. The favorable test site used limited the expression of vine decline and winter injury usually associated with over-cropping of this cultivar in the Niagara Peninsula of Ontario.

Open Access

In order to gain an understanding of the capacity of severely shaded leaves to be productive in dense canopies, the effects of increased shading on morphology, dry-matter partitioning, and whole-plant net carbon exchange rate (NCER) were investigated on greenhouse-grown Vitis vinifera L. `Chardonnay' grapevines. Vines were subjected to whole-plant shading levels of 0%, 54%, 90%, and 99% of direct sun 3 weeks after potting. Data were collected 8 to 10 weeks after potting. Nonlinear regression was used to investigate the relationship of leaf morphological traits and organ dry weights to increased shading. Leaf size was maintained with increased shading to approximately the 90% shading level, while leaf fresh weight, volume, density, and thickness were immediately reduced with increased shading. Root dry weight was most affected by increased shading, and root to shoot ratio was reduced. When nonlinear regressions were produced for light response curves, light compensation point was reduced by approximately 49% by moderate shading, and 61% by severe shading. Shaded leaves approached the asymptote of the light response curve more quickly, and had reduced dark respiration rates, indicating that the morphological compensation responses by the vine allow shaded leaves to use available light more efficiently. However, the long-term ramifications of reduced root growth in the current year on vines with shaded leaves may be significant.

Free access

Potted `Chardonnay' grapevines (Vitis vinifera L.) with either two or three shoots were grown in a greenhouse for one month and then transferred to a phytotron room, where either one or two shoots were shaded. Twenty-four days after transfer, leaves at the fifth node of either the light-adapted or shade-adapted shoot were exposed to a 2-hour pulse of 14CO2. Both light environment and number of shade shoots on the vine had a significant effect on photosynthate partitioning within the plant following a 22-hour chase. Leaves fed with 14CO2 on a light-adapted shoot translocated 26.1% and 12.7% more radioactivity to the roots and trunk, respectively, than leaves from shade-adapted shoots. Photosynthates were exported from light-adapted leaves to shade-adapted shoots (1.3% of total 14C in plant). The number of shaded shoots and the light environment of the fed leaf had a large effect on partitioning of photosynthates among ethanol-insoluble, water-soluble, and chloroform-soluble fractions within the leaf. Recovered 14C in the water-soluble fraction of the fed leaf appeared to be affected more by number of shoots than by light environment of the fed leaf. The data suggest that there is a sink effect on initial carbon partitioning patterns in grapevine leaves. Sink strength may have a greater role than light environment. A large proportion of interior leaves versus exterior leaves may be costly with respect to the carbohydrate budget of a vine.

Free access

Reusing irrigation water has technical, environmental, and financial benefits. However, risks are also associated with the accumulation of agrochemicals, in addition to ions, plant and food safety pathogens, and biofilm organisms. In this project, we measured the concentration of paclobutrazol (a persistent and widely used plant growth regulator) in recirculated water in greenhouses producing ornamental plants in containers. Solutions were collected from catchment tanks at nine commercial greenhouses across seven states in the United States in Spring and Fall 2014. Paclobutrazol was detected in all samples, with differences observed by season, greenhouse operation, paclobutrazol application method, and irrigation method. Across operations, the residual concentration of paclobutrazol was higher in spring for most greenhouses (ranging from 0 to 1100 µg·L−1) compared with the fall (ranging from 0 to 8 µg·L−1). The spray-drench application method resulted in the highest residual concentrations (up to 35 µg·L−1), followed by substrate drench (up to 26 µg·L−1) and foliage spray (concentrations under 3 µg·L−1). Residual concentrations were higher with overhead irrigation (up to 35 µg·L−1) compared with subirrigation systems (up to 15 µg·L−1). Our results indicate that paclobutrazol is likely to be a growth retardant risk in greenhouse operations recirculating water. A clear understanding of the risks associated with recirculated water intends to support the development and implementation of risk management strategies to ensure and promote safe use of recirculated water in greenhouses. Overall, the most effective preventative strategy is to ensure the use of the minimum amount of the a.i. necessary per unit of space and time.

Open Access