Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: K. W. Johnson x
Clear All Modify Search
Authors: and

Abstract

Autotetraploid watermelons were produced by treating the growing points of diploid seedlings with aqueous colchicine solution or by soaking diploid seeds in colchicine solution. The soaking method was more effective.

Diploid pollen was apparently more viable than tetra-ploid pollen. Examination of germinating tetraploid pollen revealed that while over two-thirds germinated normally a small percentage sent forth 2, 3 or 4 normalsized pollen tubes or a single bifurcated tube. Germinating diploid pollen always put forth only one unbranched pollen tube. Tetraploid plants did not set fruit when pollinated with pollen from tetraploids; however, they did set fruit when pollinated with pollen from diploids.

Cytological observations were made of pollen mother cells of both diploid and tetraploid plants. Meiosis in diploids was regular; however, irregularities were observed in tetraploids. Examination of some pollen mother cells of tetraploids at the quartette stage revealed micro sporocytes in addition to the 4 microspores. The abnormal quartette formations and lower pollen viability of tetraploids were believed associated with irregularities observed at meiosis. Preliminary investigations of megaspore formation revealed no apparent differences between the diploid and tetraploid megaspores. Although meiotic irregularities were found, a sufficient amount of apparently viable pollen was observed. A physiological basis for the self-sterility is suggested.

Open Access

Home gardeners living in areas with alkaline water sources do not have easy or economically affordable means of acidifying irrigation water for vegetable production. One solution for achieving optimal vegetable yields using alkaline irrigation water is to grow the vegetables in a modified medium. To date, no medium on the retail market suits such growing needs. Therefore, medium recipes with varied levels (0, 4, or 8 lb/yard3) and sources of calcium [dolomitic lime, calcium sulfate (CaSO4)] and magnesium [dolomitic lime, magnesium sulfate (MgSO4)] were tested using an alkaline irrigation on ‘Oakleaf’ lettuce (Lactuca sativa), ‘Earliana’ and ‘Salad Delight’ cabbage (Brassica oleracea var. capitata), and ‘Snow Crown’ cauliflower (Brassica oleracea var. botrytis) crops. Additionally, crops were grown in two environments, under a high tunnel and on a nursery yard. High tunnel and nursery yard sites were used to test media performances in the presence of, and eliminating, rainwater to simulate container-grown vegetables growing in both a home garden situation and a commercial greenhouse production situation. The base mix of all media treatments in the study was 80 bark : 20 peat and fertilized with 12 lb/yard3 slow-release fertilizer at a rate of 1.8 lb/yard3 nitrogen (N), 0.5 lb/yard3 phosphorus (P), and 1 lb/yard3 potassium (K). This initial fertilizer application was incorporated to each medium before filling containers. Four treatments were tested against a commercially available medium, industry standard (IS) treatment (a commercially available bagged medium), and a control medium [treatment C (no supplemental calcium or magnesium fertilizer)] by supplementing the base mix with the following fertilizer levels: 4 lb/yard3 each of CaSO4 and MgSO4 (treatment 1); 4 lb/yard3 dolomitic lime (treatment 2); 4 lb/yard3 each of dolomitic lime, CaSO4, and MgSO4 (treatment 3); 8 lb/yard3 dolomitic lime (treatment 4). Media treatments 1 through 4 outperformed the IS and C media treatments in nearly all crops. All crops grown on the nursery yard, and cabbage grown under the high tunnel, had greater yields when grown in medium treatment 3, compared with the IS and C media treatments (P ≤ 0.05). All crops grown in medium treatment 2 on the nursery yard produced greater yields than the IS and C media treatments (P ≤ 0.05).

Full access

Seed of 15 watermelon cultivars were evaluated for germinating ability at sub-optimum temperatures. Seeds of each cultivar were exposed to 12.8, 15.6, 18.3, 21.1, and 30.0°C for 8 days in a germinator in accordance to standard seed testing rules. Radical emergence was evaluated on day 5 and day 8. None of the cultivars germinated at 12.8C after 8 days exposure. At 15.6°C, 'Red-N-Sweet' and `Blackstone' had germinations of 54 and 40 percent respectively on day 5, and both increased to over 80 percent on day 8. At 18.3°C `Red-N-Sweet' and `Blackstone' exhibited at least 90 percent germination after 5 days while the other 14 cultivars ranged from 2.5 to 86 percent. At 21.1°C all cultivars except `Black Diamond' and `Allsweet' had germinations of 80 percent or higher on day 5. Germination increased to 90 percent or above by day 8 except for `Black Diamond' at 83 percent. There were no significant differences among cultivars at the 30°C optimum germinating temperature with cultivars having 89.5 percent or higher germination.

Free access

Abstract

An inexpensive chamber for controlled freezing of large container-grown plants up to 2 m in height was constructed using liquid nitrogen as a refrigerant. A microcomputer-based system was developed to control the cooling sequence and to collect data on tissue temperature, air temperature, and exotherms. Versatile software was written that allowed the programmed rate of temperature drop to be based on either tissue temperature or air temperature.

Open Access