Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: K. O. Roberts x
Clear All Modify Search

Caladiums (Caladium ×hortulanum) are popular ornamental plants widely grown for their bright colorful leaves. Pythium root rot, caused by Pythium myriotylum, is one of the few soil-borne diseases in caladium that dramatically reduces plant growth, aesthetic value, and tuber yield. Information on the reaction of caladium cultivars to P. myriotylum is not available, but would be valuable for integrated control of this disease and for breeding new resistant cultivars. Three Pythium isolates obtained from decaying roots of plants collected from a field production site and two greenhouses were evaluated for pathogenicity and potential use in experiments to screen commercial caladium cultivars for resistance. All three isolates were found to be highly virulent; they were able to cause obvious root rotting within 3 to 5 days and severe root rotting and leaf losses on susceptible cultivars within 10 days after inoculation. Nineteen major commercial cultivars were evaluated for their resistance to these isolates. Fifteen of the cultivars were susceptible or highly susceptible to Pythium infection. Four widely grown cultivars, `Candidum', `Candidum Jr.', `Frieda Hemple', and `White Christmas', were found to have a moderate level of resistance (partial resistance) to pythium root rot. Pythium infection also caused leaf discoloration, epinasty, wilting, and collapse. Regression analyses revealed a linear relationship between the root rot and leaf loss severity on Pythium-inoculated plants.

Free access

Caladiums (Caladium ×hortulanum) are widely grown as pot or landscape plants for their attractive leaves. Pythium root rot (Pythium myriotylum) is one of the most damaging diseases in caladium, severely reducing plant growth, aesthetic value, and tuber yield. Twenty-three commercial cultivars were inoculated with three aggressive isolates of P. myriotylum and evaluated for their resistance to root rot. Three cultivars, `Apple Blossom', `Blizzard', and `Etta Moore', were found to have a moderate level of resistance (partial resistance) to pythium root rot. The rest of these cultivars were susceptible or highly susceptible to Pythium infection, losing up to 94% of their root tissue to rotting within 10 days after inoculation. Data indicated a linear relationship between root rot severity and leaf loss severity on Pythium-inoculated plants and highlight the importance of controlling pythium root rot in caladium pot plant and tuber production. Comparison of some recent releases with their parents for pythium root rot resistance suggests the potential of developing new resistant caladium cultivars using the identified sources of resistance.

Full access

In Fall 2001 in Nova Scotia's Annapolis Valley (Canada), several million kilograms of processing and table-stock potatoes (Solanum tuberosum L.) were affected by a severe “musty” “off” flavor and “off” odor that persisted after cooking. 2,4,6-Trichloroanisole (TCA), a potent musty flavor/odor compound that is not known to be a potato metabolite was detected in samples of three potato lots rejected by consumers. To determine the role and source of TCA in the affected crop, samples of tubers from 30 fields were evaluated, including examination of production inputs and industry estimation of the “off” flavor, expert organoleptic assessment of flavor–odor intensity, and analytical quantitation of the TCA content of affected tubers, followed by a soil challenge to provoke TCA production. Production of “musty” potatoes was associated with unusually hot (>30 °C) soil temperatures during the 2001 growing season, and in some cases with γ-cyclohexane hexachloride (CHC) applied to control soil wireworm (putatively Limonius agonus Say). TCA quantitation and organoleptic assessment were in general agreement. Samples of soils from “idle” fields (no agricultural inputs for at least 8 years) and “production” fields (produced “off”-flavor potatoes in 2001) were subjected to several factors: 1) presence or absence of potato tubers; 2) preheating at 30 °C for 3 days, or no preheating; and followed by 3) no pesticides, or γ-CHC, chlorothalonil, chlorpyrifos, fludioxonil, imidacloprid, or linuron applied singly, or all six pesticides applied together. After incubation for 2 weeks at 22 °C day/14 °C night with a 14-hour photoperiod, solid-phase microextraction/gas chromatographic–mass spectrometric analysis revealed that untreated soils released small quantities of TCA (2.8 mol·kg−1) whereas higher quantities of TCA were present in soils treated with pesticides (3.8–6.6 mol·kg−1). The quantity of TCA released was not significantly affected by the presence or absence of potato tubers, but it was increased by preheating the soil sample, regardless of the other two factors, and by an interaction between pesticides and soil source. The quantity of TCA from both “idle” and “production” soils was highest when γ-CHC was added alone (214% and 284% of checks respectively). TCA production increased in the presence of the other five pesticides applied singly in “production” soils, but not in “idle” soils. Application of the six pesticides together increased TCA in both soils. Such an association of TCA-based “musty” “off” flavor with field soils containing γ-CHC and other pesticides combined with high soil temperature had not been reported previously.

Free access


A number of pre-emergence soil residual herbicides were tested at 2 locations on varieties of young peach, plum, cherry, pear and walnut rootstocks. The greatest variation in response resulted from differences in location. Important differences in varietal response were also obtained with the various herbicides in light soils. Simazine appeared sufficiently safe to trees in heavier soil but gave variable weed control. Diuron gave about the same degree of weed control but more safety than simazine on young trees. Of the uracil herbicides tested, DP-733 was the least toxic to the fruit tree species tested, while bromacil and isocil were generally the most toxic, except to peach trees. Of the commercial uracil herbicides, only DP-732 (terbacil) was of sufficient interest for further study.

Open Access