Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jun-feng Qi x
Clear All Modify Search

Light-emitting diodes (LEDs) have shown great potential for plant growth and development, with higher luminous efficiency and more flexible and feasible spectral control compared with other artificial lighting. The combined effects of red and blue (RB) LED with or without green (G) LED light and white LED light on lettuce (Lactuca sativa L.) growth and physiology, including nitrate content, chlorophyll fluorescence, and phytochemical concentration before harvest, were investigated. Continuous light exposure at preharvest can effectively reduce nitrate accumulation and increase phytochemical concentrations in lettuce plants. Nitrate accumulation is dependent on the spectral composition and duration of treatment: lettuce exposed to continuous RB (with or without G) LED light with a photosynthetic photon flux (PPF) of 200 µmol·m−2·s−1 exhibited a remarkable decrease in nitrate content at 24 hour compared with white LED light treatment at the same PPF. In addition, RB LED light (R:B = 4:1) was more effective than white LED light at the same PPF in facilitating lettuce growth. Moreover, continuous LED light for 24 hours significantly enhanced free-radical scavenging activity and increased phenolic compound concentrations. We suggest that 24 hours continuous RB LED with G light exposure can be used to decrease nitrate content and enhance lettuce quality.

Free access

Cold stress is one of the most important environmental factors affecting crop growth and agricultural production. Induced changes of gene expression and metabolism are critical for plants responding and acclimating to cold stress. Banana (Musa sp.) is one of the most important food crops in the tropical and subtropical countries of the world. Banana, which originated from tropical regions, is sensitive to cold, which can result in serious losses in commercial banana production. To investigate the response of the banana to cold stress conditions, changes in protein expression were analyzed using a comparative proteomics approach. ‘Brazil’ banana (Musa acuminata AAA group) is a common banana cultivar in southern China. ‘Brazil’ banana plantlets were exposed to 5 °C for 24 hours and then total crude protein was extracted from treatment and control leaves by phenol extraction, separated with two-dimensional gel electrophoresis, and subsequently identified by mass spectrometry (MS). Out of the more than 400 protein spots reproducibly detected, only 41 protein spots exhibited a change in intensity by at least 2-fold, with 26 proteins increasing and 15 proteins decreasing expression. Of these, 28 differentially expressed proteins were identified by MS. The identified proteins, including well-known and novel cold-responsive proteins, are involved in several cellular processes, including antioxidation and antipathogen, photosynthesis, chaperones, protein synthesis, signal transduction, energy metabolism, and other cellular functions. Proteins related to antioxidation, pathogen resistance, molecular chaperones, and energy metabolism were up-regulated, and proteins related to ethylene synthesis, protein synthesis, and epigenetic modification were down-regulated in response to cold temperature treatment. The banana plantlets incubated at cold temperatures demonstrated major changes in increased reactive oxygen species (ROS) scavenging, defense against diseases, and energy supply. Increased antioxidation capability in banana was also discovered in plantain, which has greater cold tolerance than banana in response to cold stress conditions. Therefore, we hypothesized that an increased antioxidation ability could be a common characteristic of banana and plantain in response to cold stress conditions. These findings may provide a better understanding of the physiological processes of banana in response to cold stress conditions.

Free access