Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Jun Yuan x
  • All content x
Clear All Modify Search
Free access

Liyuan Huang, Jun Yuan, Hui Wang, Xiaofeng Tan, and Genhua Niu

High concentration of aluminum ion (Al3+) in acidic soil often negatively affects plant growth. To deepen understanding of the mechanisms of physiological response to Aluminum (Al) toxicity, changes in physiology and cell ultrastructure of oil tea (Camellia oleifera) were investigated under different Al levels. Oil tea plants were grown in pots filled with sand and treated with Al at 0, 0.5, 1.25, 2.0, or 4.0 mm. Results showed that Al at 0.5–2.0 mm improved plant growth, whereas Al at 4.0 mm inhibited root growth and damaged cell ultrastructure. Net photosynthetic rate (Pn), stomatal conductance (g s), transpiration rate (Tr), and photochemical efficiency increased as Al concentration increased from 0 to 2.0 mm; however, all parameters mentioned previously decreased at 4.0 mm. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in leaves treated with 2.0 mm Al reached the maximum, which were 29%, 63%, and 28% higher than that of control. When Al was ≤2.0 mm, the content of soluble sugar and soluble protein increased with increasing Al concentration. These results may indicate that oil tea adapted to Al stress through osmotic adjustment and through increasing antioxidant enzyme system. In summary, Al at low concentration (0.5–2.0 mm) improved growth and physiological performance, whereas 4.0 mm negatively impacted performance of oil tea.

Free access

Jun Yuan, Liyuan Huang, Naifu Zhou, Hui Wang, and Genhua Niu

Aluminum (Al) toxicity and phosphorus (P) deficiency are two crucial factors limiting the production of Camellia oleifera, which is grown commercially in red acidic soils in Southern China. The current study characterized the different forms of P and Al in the red acidic soils of C. oleifera plantations. Soil and plant tissue samples taken from 32 Camellia plantations across Hunan province were analyzed. Furthermore, a pot experiment with nutrient solutions of different Al and P contents was carried out to investigate P and Al uptake and their effect on C. oleifera growth. The results showed that the P content extracted by NaOH (Fe-P) was the highest in all types of soil samples (rhizosphere, 0–20 cm, and 20–40 cm zones), followed by P extracted by NH4F (Al-P), H2SO4 (Ca-P), and Na3C6H5O7 (O-P). HCl (In-Al), NH4Ac (Ha-Al), and Na4P2O7·10H2O (Or-Al) extracted Al were the main forms and accounted for 22.8%, 23.1%, and 23.8% of total Al, respectively. KCl extracted Al (Ex-Al) contents in the rhizosphere, 0–20 cm, and 20–40 cm soil zones were 4.78, 4.86, and 4.59 mg·kg−1, respectively. P contents in roots, young leaves, and old leaves were 0.80, 0.82, and 0.64 mg·kg−1, respectively. The highest Al content of 11.35 g·kg−1 was found in the old leaves, followed by roots and young leaves. Correlation analyses revealed that P in roots was positively associated with available P (AP) and Al-P in rhizosphere. P in roots and young leaves also had a positive correlation with Ex-Al, whereas Al in old leaves was positively correlated with In-Al and total Al. Significant correlations between Al-P, Ex-Al, and AP were detected. The pot experiment indicated that adding Al or P alone increased plant growth and Al or P uptake, respectively. When adding both Al and P, significant synergistic effect was found. These results suggest that Al is beneficial to C. oleifera, which may be the adaptive mechanism of C. oleifera to use insoluble Al-P in red acidic soil.

Free access

Yayan Feng, Leifeng Xu, Panpan Yang, Hua Xu, Yuwei Cao, Yuchao Tang, Suxia Yuan, and Jun Ming

Lilium davidii var. unicolor Salisb is a cultivar of Lilium (Liliaceae) with important edible and ornamental characteristic. The application and production of Lilium davidii var. unicolor Salisb were still facing large problems because of its several disadvantages such as narrow range of adaptability, small annual growth increment, and low fertility. To achieve broader environmental adaptability and obtain a more nutritious germplasm, we used colchicine and oryzalin to induce chromosome doubling via the soaking method. Tissue culture bulbs were treated with colchicine at 0.03%, 0.05%, or 0.08% for 32, 40, or 48 hours or with oryzalin at 0.002%, 0.005%, 0.008%, or 0.01% for 3, 6, 9, 12, or 24 hours before being transferred to a differentiating medium. The results showed that colchicine treatment resulted in the highest induction rate when applied at 0.05% for 48 hours, whereas oryzalin treatment produced fewer tetraploid plants. The chromosome number of induced plants with small stoma density and longer guard cells is twice than that of the diploid. The plants were identified as tetraploid. In this study, a new germplasm of Lilium davidii var. unicolor Salisb was innovative and showed novel genetic characteristic.

Free access

Ze Li, Xiaofeng Tan, Zhiming Liu, Qing Lin, Lin Zhang, Jun Yuan, Yanling Zeng, and Lingli Wu

Camellia oleifera Abel. is one of four major woody oil plants in the world. The objective of the current study was to evaluate the effect of different plant growth regulators (PGRs) and concentrations on direct organogenesis using cotyledonary nodes, hypocotyls, and radicle explants. High induction frequency of adventitious shoots were obtained from cotyledonary nodes, hypocotyls, and radicle explants (85.2%, 73.6%, and 41.0%, respectively) when cultured on half-strength Murashige and Skoog (1/2 MS) medium containing 2.0 mg·L−1 6-benzylaminopurine (BA) and 0.1 mg·L−1 indole-3-acetic acid (IAA). Microshoots from cotyledonary nodes, hypocotyls, and radicle explants were then transferred to 1/2 MS medium containing 2.0 mg·L−1 BA and 0.05 mg·L−1 indole-3-butyric acid (IBA) for shoot multiplication, resulting in 6.9 shoots per explant. The shoots were transferred to Woody Plant Medium (WPM) supplemented with various α-naphthalene acetic acid (NAA) and gibberellic acid (GA3) for shoot elongation. The mean length of shoots and the number of leaves per shoot were 3.7 and 6.6 cm, respectively, in WPM supplemented with 0.5 mg·L−1 NAA and 3.0 mg·L−1 GA3. The highest rooting of shoots (90.2%) or the number of roots per shoot (7.2) was obtained when elongated microshoots were transferred to 1/2 MS medium supplemented with 3.5% perlite, 1.0 mg·L−1 IBA and 2.0 mg·L−1 NAA. The rooted plantlets were successfully acclimatized in the greenhouse with a survival rate of 90.0%. The in vitro plant regeneration procedure described in this study is beneficial for mass propagation and improvement of C. oleifera through genetic engineering.

Free access

Jing Mao, Hongliang Xu, Caixia Guo, Jun Tong, Yanfang Dong, Dongyun Xu, Fazhi Chen, and Yuan Zhou

Although tolerance to high temperature is crucial to the summer survival of Iris germanica cultivars in subtropical areas, few physiological studies have been conducted on this topic previously. To remedy this, this study explored the physiological response and expression of heat shock factor in four I. germanica cultivars with varying levels of thermotolerance. The plants’ respective degrees of high-temperature tolerance were evaluated by measuring the ratio and area of withered leaves under stress. Several physiological responses to high temperatures were investigated, including effects on chlorophyll, antioxidant enzymes, proline, and soluble protein content in the leaves of four cultivars. CaCl2 was sprayed on ‘Gold Boy’ and ‘Royal Crusades’ considered being sensitive to high temperatures to study if Ca2+ could improve the tolerance, and LaCl3 was sprayed on ‘Music Box’ and ‘Galamadrid’ with better high-temperature tolerance to test if calcium ion blocker could decrease their tolerance. Heat shock factor genes were partially cloned according to the conserved region sequence, and expression changes to high-temperature stress with CaCl2 or LaCl3 treatments were thoroughly analyzed. Results showed that high temperature is the primary reason for large areas of leaf withering. The ratio and area of withered leaves on ‘Music Box’ and ‘Galamadrid’ were smaller than ‘Gold Boy’ and ‘Royal Crusades’. CaCl2 slowed the degradation of chlorophyll content and increased proline and soluble protein in ‘Gold Boy’ and ‘Royal Crusades’ but had no significant effect on activating peroxidase or superoxide to improve high-temperature tolerance. Genetic expression of heat shock factor in ‘Gold Boy’ and ‘Royal Crusades’ was upregulated by Ca2+ at later stages of leaf damage under high-temperature stress. LaCl3 down-regulated the physiological parameters and expression level of heat shock factor in ‘Music Box’ and ‘Galamadrid’. These results suggest that different I. germanica cultivars have varying high-temperature tolerance and furthermore that Ca2+ regulates their physiological indicators and expression level of heat shock factor under stress.

Full access

Xinjing Qu, Hui Wang, Ming Chen, Jiao Liao, Jun Yuan, and Genhua Niu

Oil tea (Camellia oleifera) is an important edible oil tree. However, its growth and yield are strongly limited by drought. This study investigated the physiological and metabolic responses of two common oil tea cultivars, Huajin and Changlin53, to moderate and severe drought stress. Based on the photosynthetic and physiological indices, ‘Changlin53’ may be more tolerant to drought than ‘Huajin’. A total of 41 key metabolites induced by drought stress, including 12 amino acids, 12 organic acids, 10 carbohydrates, 3 fatty acids, and 4 phenols, have been identified by liquid chromatography-mass spectrometry. Under moderate drought stress, the contents of carbohydrates, amino acids, and some organic acids in ‘Changlin53’ were significantly increased; however, under severe drought stress, the contents of soluble sugars were decreased and the synthesis ability of amino acids and organic acids were enhanced. The glutamic acid–mediated proline biosynthesis pathway and salicylic acid synthesis were continuously upregulated in ‘Changlin53’ under moderate and severe drought stress, which could regulate osmotic pressure and maintain intracellular environmental stability. Under moderate drought stress, the contents of monosaccharides, amino acids, and organic acids increased in ‘Huajin’ leaves. Furthermore, the shikimic acid–mediated secondary metabolite synthesis pathway was weakened. More secondary metabolites were used to increase glycolysis and tricarboxylic acid cycle to accelerate energy production and to enhance the glutamic acid–mediated proline biosynthesis pathway, which are necessary to increase osmotic regulation. Under severe drought stress, the contents of carbohydrates, organic acids, and some amino acids were significantly decreased in ‘Huajin’ leaves, indicating serious damage. These results deepened our understanding of the mechanisms involved in oil tea drought tolerance, which will help improve water management of oil tea seedlings.

Open access

Ze-yuan Mi, Ding-hao Lv, Guang-hui Jiang, Jun-feng Niu, Shi-qiang Wang, and Zhe-zhi Wang

Bletilla striata (Thunb. ex A. Murray) Rchb. f., a species of perennial herb of orchidaceae that has remarkable effects and high economic value, has been intensively studied by many scholars. Although this herb has many seeds, the germination rate is exceptionally low, which leads to decreased germplasm resources and increased market demand every year. To solve this problem, this study examined the aseptic germination system and the direct seeding technology system. On Murashige and Skoog (MS) medium, 2.0 mg/L 6-benzylaminopurine (6-BA) and 1.0 mg/L naphthylacetic acid (NAA) were added before seed germination, and 70 g/L banana juice and 0.5 mg/L NAA were added when rooting. Then, the seedlings were transplanted to a mixed substrate of humus, river sand, and bark (volume ratio of 3:1:1). The direct seeding system consists of substrate treatment, sowing, seedling raising, seedling growth, and transplanting. Turfy soil, Huangjiang residue, and river sand were selected as the substrate. The results revealed that the germination rate was increased to 91.8%, whereas the plantlet regeneration was increased to 82.0%. After 180 days of cultivation, the plants could be transplanted as finished seedlings. The establishment of B. striata seedling system provides a safe, rapid, reliable production technology route for industrial development.

Free access

Hua Gao, Zheng-yang Zhao, Yu-miao Lu, Yi-zhen Wan, Lei-cun Wang, Jing-jun Yuan, and Peter M. Hirst

Full access

Kang-Di Hu, Xiao-Yue Zhang, Sha-Sha Wang, Jun Tang, Feng Yang, Zhong-Qin Huang, Jing-Yu Deng, Si-Yuan Liu, Shang-Jun Zhao, Lan-Ying Hu, Gai-Fang Yao, and Hua Zhang

Hydrogen sulfide (H2S) has been proven to be a multifunctional signaling molecule in plants. In this study, we attempted to explore the effects of H2S on the climacteric fruit tomato during postharvest storage. H2S fumigation for 1 d was found to delay the peel color transition from green to red and decreased fruit firmness induced by ethylene. Further investigation showed that H2S fumigation downregulated the activities and gene expressions of cell wall–degrading enzymes pectin lyase (PL), polygalacturonase (PG), and cellulase. Furthermore, H2S fumigation downregulated the expression of ethylene biosynthesis genes SlACS2 and SlACS3. Ethylene treatment for 1 d was found to induce the expression of SlACO1, SlACO3, and SlACO4 genes, whereas the increase was significantly inhibited by H2S combined with ethylene. Furthermore, H2S decreased the transcript accumulation of ethylene receptor genes SlETR5 and SlETR6 and ethylene transcription factors SlCRF2 and SlERF2. The correlation analysis suggested that the fruit firmness was negatively correlated with ethylene biosynthesis and signaling pathway. The current study showed that exogenous H2S could inhibit the synthesis of endogenous ethylene and regulate ethylene signal transduction, thereby delaying fruit softening and the ripening process of tomato fruit during postharvest storage.