Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Jun Tang x
Clear All Modify Search
Free access

Jun Tang, Kang-Di Hu, Lan-Ying Hu, Yan-Hong Li, Yong-Sheng Liu and Hua Zhang

Hydrogen sulfide (H2S) has been shown to be a gaseous molecule in the regulation of many processes in plants such as abiotic stress tolerance, root organogenesis, stomatal movement, and postharvest fruit senescence. We studied the role of H2S in the regulation of senescence and fungal decay in fresh-cut sweetpotato (Ipomoea batatas L., cv. Xushu 18) roots. H2S donor sodium hydrosulfide (NaHS) alleviated senescence in fresh-cut sweetpotato root tissue in a dose-dependent manner with the optimal concentration of 2.0 mmol·L−1 NaHS solution. At the optimal concentration of 2.0 mmol·L−1 NaHS, H2S fumigation maintained higher levels of reducing sugar in sweetpotato fresh-cut root. H2S treatment also significantly increased the activities of guaiacol peroxidase (POD) and decreased those of polyphenol oxidase (PPO) in sweetpotato during storage. Further investigation showed that H2S treatment maintained a lower level of lipoxygenase (LOX) activity compared with water control. Consistently, the accumulation of malondialdehyde (MDA) was reduced in H2S-treated groups. Three fungal pathogens, Rhizopus nigricans, Mucor rouxianus, and Geotrichum candidum, were isolated from sweetpotato tissue infected with black rot or soft rot. H2S fumigation at 1 to 2.5 mmol·L−1 NaHS resulted in effective inhibition of the three fungi when grown on medium. When the three fungi were inoculated on the surface of sweetpotato slices, H2S fumigation greatly reduced the percentage of fungal infection. In conclusion, these data suggest that H2S effectively alleviated the senescence and decay in sweetpotato slices and might be developed into a novel fungicide for reduction of black rot or soft rot in sweetpotato.

Restricted access

Yayan Feng, Leifeng Xu, Panpan Yang, Hua Xu, Yuwei Cao, Yuchao Tang, Suxia Yuan and Jun Ming

Lilium davidii var. unicolor Salisb is a cultivar of Lilium (Liliaceae) with important edible and ornamental characteristic. The application and production of Lilium davidii var. unicolor Salisb were still facing large problems because of its several disadvantages such as narrow range of adaptability, small annual growth increment, and low fertility. To achieve broader environmental adaptability and obtain a more nutritious germplasm, we used colchicine and oryzalin to induce chromosome doubling via the soaking method. Tissue culture bulbs were treated with colchicine at 0.03%, 0.05%, or 0.08% for 32, 40, or 48 hours or with oryzalin at 0.002%, 0.005%, 0.008%, or 0.01% for 3, 6, 9, 12, or 24 hours before being transferred to a differentiating medium. The results showed that colchicine treatment resulted in the highest induction rate when applied at 0.05% for 48 hours, whereas oryzalin treatment produced fewer tetraploid plants. The chromosome number of induced plants with small stoma density and longer guard cells is twice than that of the diploid. The plants were identified as tetraploid. In this study, a new germplasm of Lilium davidii var. unicolor Salisb was innovative and showed novel genetic characteristic.

Restricted access

Kang-Di Hu, Xiao-Yue Zhang, Sha-Sha Wang, Jun Tang, Feng Yang, Zhong-Qin Huang, Jing-Yu Deng, Si-Yuan Liu, Shang-Jun Zhao, Lan-Ying Hu, Gai-Fang Yao and Hua Zhang

Hydrogen sulfide (H2S) has been proven to be a multifunctional signaling molecule in plants. In this study, we attempted to explore the effects of H2S on the climacteric fruit tomato during postharvest storage. H2S fumigation for 1 d was found to delay the peel color transition from green to red and decreased fruit firmness induced by ethylene. Further investigation showed that H2S fumigation downregulated the activities and gene expressions of cell wall–degrading enzymes pectin lyase (PL), polygalacturonase (PG), and cellulase. Furthermore, H2S fumigation downregulated the expression of ethylene biosynthesis genes SlACS2 and SlACS3. Ethylene treatment for 1 d was found to induce the expression of SlACO1, SlACO3, and SlACO4 genes, whereas the increase was significantly inhibited by H2S combined with ethylene. Furthermore, H2S decreased the transcript accumulation of ethylene receptor genes SlETR5 and SlETR6 and ethylene transcription factors SlCRF2 and SlERF2. The correlation analysis suggested that the fruit firmness was negatively correlated with ethylene biosynthesis and signaling pathway. The current study showed that exogenous H2S could inhibit the synthesis of endogenous ethylene and regulate ethylene signal transduction, thereby delaying fruit softening and the ripening process of tomato fruit during postharvest storage.

Restricted access

Chen Chen, Meng-Ke Zhang, Kang-Di Hu, Ke-Ke Sun, Yan-Hong Li, Lan-Ying Hu, Xiao-Yan Chen, Ying Yang, Feng Yang, Jun Tang, He-Ping Liu and Hua Zhang

Aspergillus niger is a common pathogenic fungus causing postharvest rot of fruit and vegetable, whereas the knowledge on virulence factors is very limited. Superoxide dismutase [SOD (EC 1.15.1.10)] is an important metal enzyme in fungal defense against oxidative damage. Thus, we try to study whether Cu/Zn-SOD is a virulence factor in A. niger. Cu/Zn-SOD encoding gene sodC was deleted in A. niger [MA70.15 (wild type)] by homologous recombination. The deletion of sodC led to decreased SOD activity in A. niger, suggesting that sodC did contribute to full enzyme activity. ΔsodC strain showed normal mycelia growth and sporulation compared with wild type. However, sodC deletion markedly increased the cell’s sensitivity to intracellular superoxide anion generator menadione. Besides, spore germination under menadione and H2O2 stresses were significantly retarded in ΔsodC mutant compared with wild type. Further results showed that sodC deletion induced higher superoxide anion production and higher content of H2O2 and malondialdehyde (MDA) compared with wild type, supporting the role of SOD in metabolism of reactive oxygen species (ROS). Furthermore, ΔsodC mutant had a reduced virulence on chinese white pear (Pyrus bretschneideri) as lesion development by ΔsodC was significantly less than wild type. The determination of superoxide anion, H2O2, and MDA in A. niger-infected pear showed that chinese white pear infected with ΔsodC accumulated less superoxide anion, H2O2, and MDA compared with that of wild type A. niger, implying that ΔsodC induced an attenuated response in chinese white pear during fruit–pathogen interaction. Our results indicate that sodC gene contributes to the full virulence of A. niger during infection on fruit. Aspergillus niger is one of the most common species found in fungal communities. It is an important fermentation industrial strain and is also known to cause the most severe symptoms in fruit during long-term storage (Pel et al., 2007). Meanwhile, plants activate their signaling pathways to trigger defense responses to limit pathogen expansion. One of the earliest host responses after pathogen attack is oxidative burst, during which large quantities of ROS are generated by different host enzyme systems, such as glucose oxidase (Govrin and Levine, 2000). ROS such as singlet oxygen, superoxide anion, hydroxyl (OH), and H2O2 are released to hinder the advance of pathogens (Gara et al., 2003). ROS can react with and damage cellular molecules, such as DNA, protein, and lipids, which will limit fungal propagation in the host plant (Apel and Hirt, 2004).