Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: Julie Newman x
Clear All Modify Search
Free access

Don Merhaut and Julie Newman

Four types of media [coir, 1 coir: 1 peat (by volume), peat, and sandy loam soil] were evaluated for their effects on plant growth and nitrate (NO 3) leaching in the production of oriental lilies (Lilium L.) `Starfighter' and `Casa Blanca'. Twenty-five bulbs were planted in perforated plastic crates and placed on the ground in temperature-controlled greenhouses. The potential for NO 3 leaching was determined by placing an ion-exchange resin (IER) bag under each crate at the beginning of the study. After plant harvest (14 to 16 weeks), resin bags were collected and analyzed for NO 3 content. Plant tissues were dried, ground, and analyzed for N content. Results indicated that the use of coir and peat did not significantly influence plant growth (shoot dry weight) relative to the use of sandy loam soil; however, substrate type influenced the amount of NO 3 leached through the media and N accumulation in the shoots for `Starfighter', but not `Casa Blanca'.

Free access

Donald J. Merhaut and Julie P. Newman

Lilies are produced throughout the year in coastal areas of California.

Cultural practices involve daily applications of water and fertilizer, using both controlled release fertilizers (CRF) and liquid fertilizers (LF). However, many production facilities are in proximity to coastal wetlands and are therefore at greater risk of causing nitrogen pollution via runoff and leaching. Due to federal and state regulations, nurseries must present a plan of best management practices (BMPs) to mitigate nutrient runoff and leaching and begin implementing these practices in the next 2 years. In the following studies, we determined the potential for nitrate leaching from four different types of substrates (coir, coir: peat, peat, and native soil). There were four replications of each treatment, with a replication consisting of one crate planted with 25 bulbs. Two cultivars were used in two separate experiments, `Star Fighter' and `Casa Blanca'. Nitrate leaching was determined by placing an ion-exchange resin bag under each crate at the beginning of the study. After plant harvest (14–16 weeks), resin bags were collected and analyzed for nitrate content. Plant tissues were dried and ground and analyzed for nitrogen content. Based on the results of these studies, it appears that the use of coir, peat, and soil may not influence plant growth significantly. Substrate type may mitigate the amount of nitrate leaching through the media. However, the cultivar type may also influence the degree of nitrate mitigation, since leaching results varied between the two cultivars.

Free access

Donald J. Merhaut*, Joseph Albano, Eugene K. Blythe and Julie Newman

Release patterns of ammonium, nitrate, phosphorus, potassium, calcium, magnesium, iron, manganese and zinc were measured during an eleven month period for four types of Controlled Release Fertilizers (CRF): Apex 17-5-11, Multicote 17-5-11, Nutricote 18-6-8 and Osmocote 24-4-9. Rate of fertilizer incorporation was 2.3 kg/m3 of nitrogen. Media consisted of 50% composted forest products, 35% ¼%-3/4% pine bark and 15% washed Builder's sand. The media was also amended with 0.60 kg/m3 of dolomite. Fertilizer was incorporated into the media with a cement mixer and placed into 2.6-L black polyethylene containers. Containers were placed on benches outside. Air and media temperature were monitored throughout the 11-month period. Containers were irrigated through a ring-dripper system. Leachate was collected twice weekly. Leachate electrical conductivity, pH, and nutrient content were measured weekly. Significant differences in the nutrient release patterns were observed between fertilizer types throughout much of the experimental period. Release rates were significantly greater during the first 20 weeks of the study compared to the last 20 weeks of the study, regardless of the fertilizer type.

Free access

Heather S. Costa, Julie Newman and Karen L. Robb

Free access

Julie P. Newman, Michael S. Reid and Linda Dodge

Commercial formulations of silver thiosulfate (STS) were evaluated for their efficacy in promoting postharvest longevity of gypsophila. Argylene, Chrysal AVB, Chrysal OVB, Oasis Dry Flower Conditioner, Rogard RS, and Silflor were compared to the anionic STS complex and to Physan plus sucrose. Flowers were pulse treated, then placed overnight at 2° C in Physan plus sucrose. Flowers treated with Rogard RS, Chrysal OVB, and Physan were held continuously in the solution. Overnight treatments of STS were compared to short pulses at higher concentrations. To simulate the effect of shipment, treated flowers were packed in boxes, then held either for 48 hours at room temperature (12-18° C) or for 60 hours in a range of ethylene concentrations. Individual stems were then placed in Physan plus sucrose. The number of open flowers, buds, and dead flowers was determined on each stem at various intervals. All products effectively extended the display life of gypsophila except Rogard RS and Chrysal OVB. Although overnight treatments with STS formulations were not as effective as pulse treatments, their convenience could warrant commercial use.

Free access

Julie P. Newman, J. Heinrich Lieth and Ben Faher

An irrigation system for monitoring and controlling soil moisture tension in the root zones of potted plants using computer and solid-state tensiometer technologies was evaluated in a commercial greenhouse on 'V-14 Glory' poinsettias over a 10 week period. Replicated benches with separate drip circuits controlled by the computer maintained the soil moisture tension of the potted poinsettia plants between 1 kPa and 5 kPa. The amount of water used by each bench and the amount leached was compared to benches with separate drip circuits that were manually operated by the grower according to standard commercial practice. There was a 65% savings in the total amount of water used for the computer-controlled system and an average weekly reduction of 98.6% in leachate. The differences were significant and there was no measurable reduction in plant quality, even though soil analyses showed slightly elevated EC levels.

Full access

Julie P. Newman, Linda L. Dodge and Michael S. Reid

Commercial floral products with claimed anti-ethylene effects were evaluated for their efficacy in promoting postharvest longevity of gypsophila (`Perfecta', `Gilboa', and `Golan' baby's breath, Gypsophila paniculata L.). These products were applied according to label directions and compared to a laboratory preparation of silver thiosulfate (STS) prepared as a short pulse treatment and as an overnight treatment; they were also compared to the new anti-ethylene gas, 1-methylcyclopropene (1-MCP). After these pretreatments, the flowers were exposed to ambient air or to 0.7 ppm ethylene gas for 36 hours; other flowers received a simulated shipping treatment. Products containing adequate concentrations of silver consistently extended the display life of gypsophila. Products with low concentrations of silver (<10 ppm) or containing aminoethoxyvinylglycine (AVG) offered no more protection than treatments without anti-ethylene compounds. Overnight treatments with STS were as effective as short pulse treatments. Although 1-MCP pretreatment helped prevent the effects of ethylene on flowers that were open at the time of pretreatment, it provided no protection for buds that opened subsequently. There were no marked differences in ethylene sensitivity among three gypsophila cultivars.

Full access

Salvatore S. Mangiafico, Julie Newman, Donald J. Merhaut, Jay Gan, Ben Faber and Laosheng Wu

Potential water quality impacts of agricultural production include runoff and leaching losses of nutrients, pesticides, and sediment. Stormwater runoff and soil water samples were collected from citrus (Citrus spp.), avocado (Persea americana), and ornamental nursery sites in Ventura County, CA, across 19 months. Nitrate–nitrite–nitrogen concentrations in runoff ranged from 0.07 to 31.1 mg·L−1, with medians for groves and nurseries of 4.2 and 5.7 mg·L−1, respectively. Constituents in runoff exceeding benchmarks for surface waters included turbidity, chlorpyrifos, and some organochlorine pesticides. When detected, chlorpyrifos concentration was linearly related to sample turbidity (P = 0.0025, r2 = 0.49). This suggests that the retention of waterborne sediments on-site may be an effective method for mitigating runoff of this pesticide. Bifenthrin, permethrin, and diazinon were also detected in runoff, but concentrations did not exceed water quality benchmarks. Nutrient concentrations in soil water were generally similar to nutrient concentrations in stormwater runoff, suggesting that potential groundwater contamination from leaching at citrus, avocado, and nursery sites may be as much of a concern as stormwater from these operations, particularly on sites with sandy or structured soil texture or flat topography. Nitrate–nitrite–nitrogen and orthophosphate concentrations in soil water were linearly related to nitrogen and phosphorus fertilizer application rates across sites, respectively (P < 0.0001, r2 = 0.49 and 0.50, respectively), suggesting that proper nutrient management is important in reducing potential groundwater contamination at these operations.

Free access

Donald J. Merhaut, Eugene K. Blythe, Julie P. Newman and Joseph P. Albano

Release characteristics of four types of controlled-release fertilizers (Osmocote, Nutricote, Polyon, and Multicote) were studied during a 47-week simulated plant production cycle. The 2.4-L containers containing a low-fertility, acid-based substrate were placed in an unheated greenhouse and subjected to environmental conditions often used for production of azaleas and camellias. Leachate from containers was collected weekly and monitored for pH, electrical conductivity, and concentrations of NH4 + N, NO3 N, total P and total K. Leachate concentrations of all nutrients were relatively high during the first 10 to 20 weeks of the study, and then gradually decreased during the remaining portion of the experiment. Differences were observed among fertilizer types, with Multicote often resulting in higher concentrations of N, P, and K in leachates compared to the leachates from the other fertilizer types during the first half of the study. Concentrations of NO3 and P from all fertilizer types were often above permissible levels as cited in the federal Clean Water Act.

Free access

Eugene K. Blythe, Donald J. Merhaut, Julie P. Newman and Joseph P. Albano

Leachate from containerized substrate containing one of four different controlled-release fertilizers (Osmocote, Nutricote, Polyon, or Multicote) were monitored for concentrations of Ca, Mg, Fe, Mn, Zn, Cu, and Mo during a 47-week period. Environmental and cultural practices simulated an unheated greenhouse production program typically used for low-nutrient-requiring crops such as azalea and camellia. Leachate concentrations of all nutrients were relatively high during the first 10 to 20 weeks of the study, and then gradually decreased during the remaining portion of the experiment. Few differences were observed among fertilizer types. Of the elements monitored, only Fe and Mn leachate concentrations were above critical levels specified in the Clean Water Act by the U.S. EPA.