Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Julia Y. Reekie x
  • Refine by Access: All x
Clear All Modify Search
Free access

Peter R. Hicklenton and Julia Y. Reekie

In northern regions, strawberry nursery plants are often dug in the late fall, packed and stored for winter, and shipped to markets in the early spring. Success depends on identifying when plants are dormant and can be safely stored. Beginning on 11 Oct., plants of Kent and Veestar were dug at weekly intervals from three fields in the Annapolis Valley, N.S., Canada. At each digging date root respiration was measured at 5, 10, 20 and 30°C. Six “first daughter” plants of each cultivar were wrapped in plastic and placed in ≈1.5°C refrigerated storage. Other plants were separated into roots and leaves for carbohydrate analysis. Fall temperatures were relatively mild with 417 crown chilling hours (8°C base) accumulated to 7 Nov. Only those plants dug on 11 Oct. did not survive when planted to the field on 1, June but vigor (number of daughters/runners) improved for plants dug later in the fall. For Kent, vigor increased through the last digging date (5 Dec.), but for Veestar, vigor did not change after 7 Nov. Early dug plants had relatively high rates of root respiration, low concentrations of leaf and root glucose, fructose, sucrose, and raffinose and high leaf starch, and low root starch concentrations. Most leaf sugar concentrations increased rapidly after 7 Nov., and root starch reached a maximum at the same date. Leaf and root carbohydrate concentrations were correlated with poststorage field vigor and may reflect the degree of plant dormancy at time of digging.

Free access

Peter R. Hicklenton, Julia Y. Reekie, Robert J. Gordon, and David C. Percival

Seasonal patterns of CO2 assimilation (ACO2), leaf water potential (ψ1) and stomatal conductance (g1) were studied in three clones (`Augusta', `Brunswick', and `Chignecto') of lowbush blueberry (Vaccinium angustifolium Ait.) over two growing seasons. Plants were managed in a 2-year cycle of fruiting (year 1) and burn-prune (year 2). In the fruiting year, ACO2 was lowest in mid-June and early September. Rates peaked between 10 and 31 July and declined after fruit removal in late August. Compared with the fruiting year, ACO2 in the prune year was between 50% and 130% higher in the early season, and between 80% and 300% higher in mid-September. In both years, however, mid-season maximum ACO2 for each clone was between 9 and 10 μmol·m–2·s–1CO2. Assimilation of CO2 increased with increasing photosynthetic photon flux (PPF) to between 500 and 600 μmol·s–1·m–2 in `Augusta' and `Brunswick', and to between 700 and 800 μmol·s–1·m–2 in `Chignecto'. Midday ψ1 was generally lower in the prune year than in the fruiting year, reflecting year-to-year differences in soil water content. Stomatal conductance (g1), however, was generally higher in the prune year than in the fruiting year over similar vapor pressure deficit (VPD) ranges, especially in June and September when prune year g1 was often twice that observed in the fruiting year. In the fruiting year, g1 declined through the day in response to increasing VPD in June, but was quite constant in mid-season. It tended to be higher in `Augusta' than in the other two clones. Stomatal closure imposes limitations on ACO2 in lowbush blueberries, but not all seasonal change in C-assimilative capacity can be explained by changes in g1.