Search Results

You are looking at 1 - 10 of 39 items for

  • Author or Editor: Judy A. Thies x
Clear All Modify Search
Free access

Judy A. Thies and Amnon Levi

Root-knot nematodes [Meloidogyne arenaria (Neal) Chitwood, Meloidogyne incognita (Kofoid & White) Chitwood, and Meloidogyne javanica (Treub) Chitwood] are serious pests of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in the southern United States and worldwide. Watermelon cultivars with resistance to any of these nematode pests are not available. Therefore, we evaluated all accessions of Citrullus colocynthis (L.) Schrad.(21) and Citrullus lanatus (Thunb.) Matsum. & Nakai var. citroides (L.H. Bailey) Mansf.(88), and about 10% of C. lanatus var. lanatus (156) accessions from the U.S. Plant Introduction (PI) Citrullus germplasm collection for resistance to M. arenaria race 1 in greenhouse tests. Only one C. lanatus var. lanatus accession exhibited very low resistance [root gall index (GI) = 4.9] and 155 C. lanatus var. lanatus accessions were susceptible (GI ranged from 5.0 to 9.0, where 1 = no galls and 9 = ≥81% root system covered with galls). All C. colocynthis accessions were highly susceptible (GI range = 8.5 to 9.0). However, 20 of 88 C. lanatus var. citroides accessions were moderately resistant with a GI range of 3.1 to 4.0; overall GI range for the C. lanatus var. citroides accessions was 3.1 to 9.0. Resistance to M. arenaria race 1 identified in the C. lanatus var. citroides accessions was confirmed on a subset of accessions in a replicated greenhouse test. The results of our evaluations demonstrated that there is significant genetic variability within the U.S. PI Citrullus germplasm collection for resistance to M. arenaria race 1 and also identified C. lanatus var. citroides accessions as potential sources of resistance.

Free access

Judy A. Thies and Amnon Levi

Root-knot nematodes (Meloidogyne spp.) cause extensive damage to watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus], and resistance to root-knot nematodes has not been identified in any watermelon cultivar. Twenty-six U.S. Plant Introductions (PIs) of Citrullus lanatus (Thunb.) Matsum. & Nakai var. citroides (L. H. Bailey) Mansf., one PI of C. lanatus var. lanatus, and three PIs of Citrullus colocynthis (L.) Schrad. were evaluated in greenhouse tests for resistances to Meloidogyne incognita (Kofoid & White) Chitwood race 3 and Meloidogyne arenaria (Neal) Chitwood race 2. Twenty-three of the C. lanatus var. citroides PIs and the C. lanatus var. lanatus PIs were previously identified as moderately resistant to M. arenaria race 1. Overall, the C. lanatus var. citroides PIs exhibited low to moderate resistance, and the C. lanatus var. lanatus and C. colocynthis PIs were susceptible to both M. incognita race 3 and M. arenaria race 2. The C. lanatus var. citroides PI 482303 was the most resistant PI with gall index (GI) = 2.88 and reproductive index (RI) = 0.34 for M. incognita race 3 and GI = 3.46 and RI = 0.38 for M. arenaria race 2 (1 = no galling; 5 = 26% to 38% root system galled; 9 = 81% to 100% root system galled). These results demonstrate that there is significant genetic variability within C. lanatus var. citroides for reaction to M. incognita and M. arenaria race 2, and several C. lanatus var. citroides PIs may provide sources of resistance to root-knot nematodes.

Free access

Richard L. Fery* and Judy A. Thies

Root-knot nematodes (Meloidogyne spp.) are major pests of pepper (Capsicum spp.) in the United States, and parasitism of susceptible plants can result in severe yield losses. Although cultivars belonging to the species C. annuum account for most of the peppers grown in the United States. Habanero-type cultivars belonging to the species C. chinense are becoming increasingly popular. Unfortunately, all commercial Habanero-type cultivars are susceptible to root-knot nematodes. In 1997, the USDA released three C. chinense germplasm lines that exhibit high levels of resistance to root-knot nematodes. The resistance in these lines is conditioned by a single dominant gene, and this gene conditions resistance to the southern root-knot nematode (M. incognita), the peanut root-knot nematode (M. arenaria race 1), and the tropical root-knot nematode (M. javanica). A recurrent backcross breeding procedure has been used to transfer the C. chinense root-knot nematode resistance gene in Habanero-type germplasm. Several root-knot nematode resistant, Habanero-type candidate cultivars have been developed. Each of these Habanero-type candidate cultivars has a compact plant habit and produces a high yield of orange-colored, lantern-shaped fruit.

Free access

Richard L. Fery and Judy A. Thies

Scotch Bonnet and Habanero peppers, extremely pungent cultivar classes of Capsicum chinense Jacq., are increasing in popularity in the United States. Because the southern root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood, is a major pest of many C. annuum cultivars, a series of greenhouse and field experiments was conducted to determine if Scotch Bonnet and Habanero peppers from available commercial and private sources also are vulnerable to the pest. In an initial greenhouse test, a collection of 59 C. chinense cultigens was evaluated for reaction to M. incognita race 3. All cultigens obtained from commercial sources were moderately susceptible or susceptible. However, four accessions obtained through Seed Savers Exchange listings exhibited high levels of resistance. Three of these cultigens (PA-353, PA-398, and PA-426) were studied in subsequent greenhouse and field plantings, and each was confirmed to have a level of resistance similar to that available in C. annuum. All three of the resistant cultigens are well-adapted and each is potentially useful in commercial production without further development. None of the Habanero cultigens was resistant to the southern root-knot nematode. The resistant Scotch Bonnet cultigens may serve as sources of resistance for development of root-knot nematode—resistant Habanero peppers.

Free access

Richard L. Fery and Judy A. Thies

Free access

Richard L. Fery and Judy A. Thies

Free access

Judy A. Thies and Richard L. Fery

Several species of root-knot nematodes [Meloidogyne incognita (Kofoid & White) Chitwood, M. arenaria (Neal) Chitwood, M. javanica (Treub) Chitwood, and M. hapla Chitwood] are major pests of peppers (Capsicum spp.) in the United States and worldwide. Resistance to M. incognita, M. arenaria, and M. javanica has been identified in several Capsicum accessions, but there are few reports of resistance to M. hapla. Therefore, we selected a 10% core (440 accessions) of the 14 available Capsicum spp. in the Capsicum germplasm collection (3,731 accessions) maintained by the U.S. Dept. of Agriculture (USDA), and evaluated this core for resistance to M. hapla in unreplicated greenhouse tests. The 11 best (most resistant) and the 3 worst (most susceptible) accessions identified in these unreplicated tests were re-evaluated in a replicated greenhouse test. Seven of these 11 “best” accessions (PI 357613, PI 357503, PI 439381, PI 297493, PI 430490, PI 267729, and PI 441676) exhibited root gall severity indices <5.0 (1 = no galls; 9 = more than 80% of the root system covered with galls) in the replicated test, and each of these indices was significantly lower than the indices of the “worst” accessions and susceptible controls. Although a gall index <5.0 indicates a moderate level of resistance, more than 3000 M. hapla eggs were extracted per gram of fresh root tissue and the reproductive index was >1.0 for each of these accessions. These observations suggest that the most resistant accessions tested are somewhat susceptible to M. hapla. The results of our evaluation of a core of the USDA Capsicum germplasm collection demonstrates clearly that there is significant genetic variability within the overall collection for M. hapla resistance. Additionally, these results identify portions of the collection where future evaluations for M. hapla resistance should be focused. For example, the origin of the two most promising C. annuum accessions (PI 357613 and PI 357503) in the core was Yugoslavia. Thus, additional accessions from this temperate region of the world should receive priority attention in any effort to identify better sources of resistance in C. annuum to M. hapla.