Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Judith Pozo x
Clear All Modify Search
Free access

Judith Pozo, Miguel Urrestarazu, Isidro Morales, Jessica Sánchez, Milagrosa Santos, Fernando Dianez and Juan E. Álvaro

The silicon (Si) percentage in the dry matter of plants is between 0.1% and 10%, and even though its role in the metabolism of plants is not absolutely clear, Si’s positive effects on plant nutrition and plant protection against both biotic and abiotic stress are well documented. However, Si is not considered to be an essential element, so it is not always present in nutrient solutions. In this paper, an experiment was carried out in the University of Almeria’s greenhouse with hydroponic lettuce, tomato, pepper, melon, and cucumber plants. A standard nutrient solution was used as a control sample and was fertigated with Si. During the four-true-leaf seedling stage, various plant growth parameters were measured, including the dry weight and the wet weight as well as the foliar surface and the cuticle thickness of both the leaf and the stem. Additionally, in the lettuce, tomato, and pepper plants, the effect of the use of Si in the nutrient solution on the protection against the pathogen Botrytis cinerea was determined by measuring the penetration of the pathogen through the cuticle and the extension of the fungal infection by using leaf discs. The results suggest that all of the studied parameters, and both the cuticle thickness and the epidermis thickness, were increased by more than 10% on average for all of the plants. In the lettuce, tomato, and pepper plants, a beneficial effect against B. cinerea was observed when the nutrient solution containing Si was used.

Free access

Judith Pozo, Juan E. Álvaro, Isidro Morales, Josefa Requena, Tommaso La Malfa, Pilar C. Mazuela and Miguel Urrestarazu

Volcanic rock has been used for decades as a horticultural substrate worldwide. In Spain, the use of this material as a substrate is ancient; it was initially used in the Canary Islands because of its volcanic geological origin. At the University of Almería (Almería, Spain), three independent vegetable crops were grown under greenhouse conditions: sweet pepper, tomato, and melon. The volcanic rock came from a location in the geographic center of Spain, which facilitated logistics. Bags of volcanic rock (25 L) were used and were compared with a commercial coconut fiber substrate of an equal volume. All physical, physical–chemical, and chemical parameters of the volcanic rock were determined using European standard analytical procedures. Fertigation was applied, independently adapted to the physical, physical–chemical, and chemical characteristics of each substrate. The cultures were performed under a randomized complete block experimental design. Fertigation parameters, pollutant emissions, fruit production, and the quality of each culture were measured. The results showed that the assessed parameters of the volcanic rock substrate are not a limiting factor for its use as a horticultural substrate. The resultant production and quality were very similar among the three crops compared with a widely used commercial control. Therefore, volcanic rock emerges as a local, sustainable alternative to be used for soilless crop cultivation.