Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Judith M. Dumm x
Clear All Modify Search

Violet to black pigmentation of eggplant (Solanum melongena L.) fruit is caused by anthocyanin accumulation. Model systems demonstrate the role of regulatory genes in the control of anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one member of each of three transcription factor families: MYB, MYC, and WD. To determine the molecular genetic basis for anthocyanin pigmentation in eggplant fruit, we used real-time polymerase chain reaction (PCR) to evaluate the expression of anthocyanin biosynthetic (Chs, Dfr, Ans) and regulatory (Myc, Myb B , Myb C , Wd) genes in S. melongena genotypes that produce fruit with dark violet (‘Classic’) or white (‘Ghostbuster’) coloration, respectively. Transcript levels and anthocyanin content were evaluated in fruit at various stages of development ranging from small post-anthesis fruit to full-sized marketable fruit. Anthocyanin content increased 9-fold in developing violet-colored ‘Classic’ fruit, whereas low but detectable concentrations were found in white ‘Ghostbuster’ fruit. Chs, Dfr, and Ans as well as Myb C and Myc transcript levels were significantly higher in ‘Classic’ in comparison with ‘Ghostbuster’ fruit at comparable stages of fruit development with greatest differences observed for Ans transcript levels. Myb C and Myc transcript levels increased in developing ‘Classic’ fruit coincident with increasing anthocyanin content. Myb B and Wd transcript levels were not coordinated with changes in biosynthetic transcript levels or anthocyanin concentration.

Free access

We identified a single plant in a grow out of the eggplant (Solanum melongena L.) variety ‘Black Beauty’ bearing green fruit. ‘Black Beauty’ normally produces violet/black pigmented fruit attributed to anthocyanin accumulation. We selected the green-fruited true-breeding genotype E13GB42 from the S2 generation obtained from selfing of the S0 green-fruited color mutant. Characterization of 12 simple sequence repeat (SSR) markers, eight fruit morphological attributes and fruit yield support E13GB42 arising as a spontaneous mutant of ‘Black Beauty’. With the exception of fruit calyx prickliness, E13GB42 was not significantly different from ‘Black Beauty’ for fruit morphological attributes and yield. E13GB42 exhibited an SSR marker profile identical to that of ‘Black Beauty’ but polymorphic with that of eight violet/black-fruited modern eggplant hybrids, older open-pollinated varieties and landraces. Transcript levels of key anthocyanin biosynthetic genes (Chs, Dfr, and Ans) and regulatory genes (Myb C , Myc, and Wd) were significantly lower in the green-fruited E13GB42 mutant in comparison with the black-fruited variety ‘Black Beauty’ at various stages of fruit development ranging from small post-anthesis fruit to full-size marketable fruit. Progeny obtained from selfing of the original mutant and reciprocal crosses with ‘Black Beauty’ produced violet, green, and green with violet striped color classes that together were not compatible with one or two gene inheritance models, suggesting that the mutation responsible for the E13GB42 phenotype influences multiple genetic factors that control fruit pigmentation.

Free access

Fresh pepper (Capsicum) fruit that are sliced and/or diced are referred to as fresh-cut products. The current report evaluates the inheritance of postharvest attributes that contribute to pepper fresh-cut quality. Marketable green fruit of large-fruited Capsicum annuum accessions with bell and related pod types (Class 1), C. annuum accessions with jalapeno and serrano pod types (Class 2), and thin-walled “aji”-like tabasco pod types from Capsicum baccatum, Capsicum frutescens, and Capsicum chinense (Class 3) were processed and stored up to 14 days in selective oxygen transmission rate packaging. Fresh-cut attributes were influenced by genotype as well as year. For all pod types, O2 and CO2 partial pressures in storage packages, tissue weight loss, and electrolyte leakage differed among accessions, days of storage, and years of testing. Percent O2 declined and CO2 and electrolyte leakage generally increased during storage. Some accessions in Class 1 and Class 2 maintained acceptable product quality during storage. Changes in fruit weight loss were small with greater weight loss observed in Class 1 accessions relative to weight loss for Class 2 and Class 3. Broad-sense heritability for fresh-cut attributes was moderate to low indicating that it will be difficult to breed for fresh-cut quality.

Free access