Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Josh B. Henry x
Clear All Modify Search

A series of experiments investigated the effects of increasing phosphate–phosphorus (P) concentrations on the growth and development of four horticultural species. In experiment 1, petunia [Petunia atkinsiana (Sweet) D. Don ex W.H. Baxter] plants were grown using eight P concentrations, and we found that the upper bound for plant growth was at 8.72–9.08 mg·L−1 P, whereas concentrations ≤2.5 mg·L−1 P caused P deficiency symptoms. Experiment 2 investigated P growth response in two cultivars each of New Guinea impatiens (Impatiens hawkeri W. Bull) and vinca [Catharanthus roseus (L.) G. Don]. Growth for these plants was maximized with 6.43–12.42 mg·L−1 P. In experiment 3, ornamental peppers (Capsicum annuum L. ‘Tango Red’) were given an initial concentration of P for 6 weeks and then switched to 0 mg·L−1 P to observe whether plants could be supplied with sufficient levels of P, and finished without P to keep them compact. Plants switched to restricted P began developing P deficiency symptoms within 3 weeks; however, restricting P successfully limited plant growth. These experiments indicated that current P fertilization regimens exceed the P requirements of these bedding plants, and depending on species, concentrations of 5–15 mg·L−1 P maximize growth.

Free access

Phosphorus (P) deficiency commonly results in the development of red-to-purple coloration in plant foliage, typically attributed to anthocyanins. Betacyanins are a red pigment found in some plant species that do not produce anthocyanins, including Alternanthera sp. This study was conducted to investigate the effects of P nutrition on the betacyanin concentration and subsequent foliar coloration of ‘Purple Prince’, ‘Brazilian Red Hots’, and ‘Little Ruby’ alternanthera (Alternanthera brasiliana). The purpose of this study was to determine whether P fertilization management could enhance the coloration and aesthetic appeal of alternanthera. Custom fertilizers provided P concentrations of 0, 2.5, 5, 10, and 20 mg·L−1 P. One-half of the plants from each P concentration were restricted to 0 mg·L−1 P 1 month after transplant to determine whether adequate size could be attained before withholding P. Differences in P response were observed among cultivars for hue, betacyanin content, and plant size. Concentrations ≤5 mg·L−1 P resulted in plants that were more compact in terms of plant height and diameter, had deeper red foliage coloration, and greater foliar betacyanins compared with plants grown with greater P concentrations. Plants initially grown with 5 or 10 mg·L−1 P attained marketable size before P restriction and developed more red pigmentation compared with plants grown with P for the remaining duration of the study. Regression analysis demonstrated height was maximized with 3 to 8 mg·L−1 P, diameter with 4.1 to 8.4 mg·L−1 P, and branching with 10.0 mg·L−1 P. Foliar betacyanin concentrations were greatest in plants grown without P, reaching 269 mg/100 g fresh weight, whereas plants grown with 10 or 20 mg·L−1 P were 95% less (averaged ≈13 mg/100 g fresh weight). This study demonstrates that P restriction can benefit the aesthetic appeal of alternanthera and provides the first confirmation that P nutrition is associated with betacyanin accumulation.

Free access

To produce popular floriculture crops, such as gloxinia (Sinningia speciosa), growers must be equipped with cultural information including the ability to recognize and characterize disorders. Diagnostic criteria for nutrient disorders of gloxinia are absent from current literature. Therefore, gloxinia plants were grown in silica-sand culture to induce, characterize, and photograph symptoms of nutritional disorders. Control plants received a complete modified Hoagland’s all-nitrate solution, whereas nutrient-deficient treatments were induced with a complete nutrient formula minus a single nutrient. Boron toxicity was induced by increasing the element 10-fold higher than the complete nutrient formula. We monitored plants continuously to document and photograph sequential series of symptoms as they developed. Typical symptomology of nutrient disorders and critical tissue concentrations are presented. Of 13 treatments, 10 exhibited symptomology; copper, molybdenum, and zinc remained asymptomatic. Symptoms of nitrogen, phosphorus, potassium, magnesium, and sulfur deficiencies, plus boron toxicity manifested early; therefore, these disorders may be more likely problems encountered by growers. Unique symptoms were observed on plants grown in nitrogen, potassium, sulfur, and iron deficient and boron toxic conditions.

Full access

Chemical plant growth retardants (PGRs) are commonly used to produce compact bedding plants. Few PGRs are labeled for sensitive species because of the concern of excessive restriction of stem elongation or phytotoxicity. Growers are therefore presented with a dilemma: produce untreated plants that may be too tall or risk applying a PGR that can potentially lead to irreversible aesthetic damage to the plant. Nutrient restriction, specifically of phosphorus (P), may be used to control plant height. This study was conducted to determine if restricting P fertilization yielded comparable growth control to plants produced with PGRs. Two cultivars each of new guinea impatiens (Impatiens hawkeri) and angelonia (Angelonia angustifolia) were grown using five fertilizers that varied by P concentration (0, 2.5, 5, 10, and 20 ppm). Half of the plants from each P fertilizer concentration were treated with paclobutrazol at 4 and 5 weeks after transplant for angelonia and new guinea impatiens, respectively. On termination of the experiment, data were collected for height, diameter, and dry weight, which were used to determine a growth index (GI). Angelonia GI values were maximized with 7–9 ppm P, whereas new guinea impatiens GI was maximized with 8–11 ppm P. Concentrations of 3–5 ppm P provided similar height control to plants grown with nonlimiting P and a paclobutrazol application. Concentrations of ≤2.5 ppm P resulted in low-quality plants with visual symptoms of P deficiency. These results indicate that a narrow range of P concentrations may be used to control stem elongation and keep plants compact.

Full access