Search Results

You are looking at 1 - 10 of 19 items for

  • Author or Editor: Jose X. Chaparro x
Clear All Modify Search
Free access

Dario J. Chavez and José X. Chaparro

Citrus kinokuni ‘Mukaku kishu’ PI539530 and its progeny were studied to identify random amplified polymorphic DNA (RAPD) primers associated with seedlessness. Ninety-one F1 [(Robinson op) × C. kinokuni] individuals showed a 1:1 segregation ratio between seedless and seeded phenotypes with seedless as a single dominant gene. Bulked segregant analysis was used to identify markers associated with the seedless locus. Eighteen RAPD primers were mapped into a partial linkage group (≈55.8 cM length) with four RAPD primers flanking the seedless locus: OPAI11-0.8 at 8.7 cM, OPAJ19-1.0 at 8.4 cM, OPM06r-0.85 at 4.3 cM, and OPAJ04r-0.6 at 6.4 cM. The identification of molecular markers linked to C. kinokuni Fs seedless locus constitutes an important and major tool for citrus breeding and selection.

Free access

Dennis J. Werner and Jose X. Chaparro

Genetic interaction of the pillar (PI) and weeping (WE) growth habit genotypes was investigated in peach [Prunus persica (L.) Batsch]. Data from F2, BC1P1, and BC1P2 families showed that PI (brbr) was epistatic to the expression of WE (plpl). A unique growth habit not previously described in peach, and referred to as arching (AR), was recovered in the F2 family. Arching trees showed an upright phenotype similar to Brbr heterozygotes, but had a distinct curvature in the developing shoots. Progeny testing of AR trees revealed their genotype is Brbrplpl.

Free access

Dennis J. Werner, Michael A. Creller and José X. Chaparro

Inheritance of the blood-flesh (red-violet mesocarp) trait in peach [Prunus persica (L.) Batsch.] was investigated in S1, S2, F1, F2, F3, BC1P1, and BC1P2 families derived from `Harrow Blood', a clone showing anthocyanin accumulation in fruit about 45-50 days after anthesis. This trait invariably was associated with the red midrib leaf phenotype in `Harrow Blood', an S1 family from `Harrow Blood', and in green leaf F2 progeny derived from `Harrow Blood' × `Rutgers Red Leaf 2n'. A segregation ratio of about 3 blood-flesh : 1 wild-type was observed in the S1 family, but F1 progeny produced only wild-type fruit. Examination of F2 progeny segregating for the blood-flesh and red leaf traits revealed no evidence of epistasis. Based on segregation ratios in F1, F2, F3, BC1P1, and BC1P2 families from this cross, the F1 family from `Contender × (`Harrow Blood' × `Rutgers Red Leaf 2n'), and six additional F1 families from crosses between `Harrow Blood' and green leaf clones with wild-type fruit, we propose that blood-flesh is controlled by one gene, designated bf (blood-flesh). The blood-flesh phenotype was associated with reduced tree height in S1 and F2 progeny derived from `Harrow Blood'. Segregation for leaf blade color deviated significantly (P = 0.05) from the expected 3 red : 1 green ratio in six of the F2 families derived from selfing seven F1 trees from `Harrow Blood' × `Rutgers Red Leaf 2n'.

Free access

Omar Carrillo-Mendoza, José X. Chaparro and Jeffrey Williamson

Tree size and branching control has gained importance as labor and pruning costs have increased. In addition, the occurrence of blind nodes is a critical factor that affects peach tree architecture and productivity in subtropical climates. Seven backcross families segregating for branching and blind nodes were developed using ‘Flordaguard’ peach × P. kansuensis or ‘Tardy Nonpareil’ almond F1s backcrossed to ‘AP00-30WBS’, ‘UFSharp’, or ‘UF97-47’ peach selections and evaluated for branching index and blind node frequency during the winters of 2010 and 2011. P. kansuensis backcrosses presented increased branching and lower blind node incidence, whereas almond backcrosses presented less branching and higher blind node incidence, resembling the P. kansuensis and almond F1 parents, respectively. There was also broad variability for branching and blind nodes within the P. kansuensis and ‘Tardy Nonpareil’ almond backcross families influenced by the peach parents that were used to generate the backcross populations. The moderate heritability and year-to-year correlation for these traits indicate that they are affected by the environment, but selection for reduced branching and lower blind node incidence is feasible.

Free access

Dario J. Chavez, Eileen A. Kabelka and José X. Chaparro

Phytophthora capsici causes seedling death, crown and root rot, fruit rot, and foliar blight on squash and pumpkins (Cucurbita spp. L.). A total of 119 C. moschata accessions, from 39 geographic locations throughout the world, and a highly susceptible butternut squash cultivar, Butterbush, were inoculated with a suspension of three highly virulent P. capsici isolates from Florida to identify resistance to crown rot. Mean disease rating (DR) of the C. moschata collection ranged from 1.4 to 5 (0 to 5 scale with 0 resistant and 5 susceptible). Potential resistant and tolerant individuals were identified in the C. moschata collection. A set of 18 PIs from the original screen were rescreened for crown rot resistance. This rescreen produced similar results as the original screen (r = 0.55, P = 0.01). The accessions PI 176531, PI 458740, PI 442266, PI 442262, and PI 634693 were identified with lowest rates of crown infection with a mean DR less than 1.0 and/or individuals with DR = 0. Further selections from these accessions could be made to develop Cucurbita breeding lines and cultivars with resistance to crown rot caused by P. capsici.

Free access

Thomas G. Beckman, Jose X. Chaparro and Wayne B. Sherman

Free access

Jose X. Chaparro, Patrick J. Conner and Thomas G. Beckman

Free access

Thomas G. Beckman, Jose X. Chaparro and Patrick J. Conner

Free access

Omar Carrillo-Mendoza, Wayne B. Sherman and José X. Chaparro

Trees without excessive branching are desirable for the reduction of pruning costs. Genetic diversity for less twiggy genotypes exists in peach and a branching index was developed for evaluation and selection of genotypes with reduced branching. The index is based on the number of total first-order branches and the number of second-order, third-order, and fourth-order branches measured on three randomly selected first-order branches. Index values were highly correlated (r 2 ≈0.7) with the total number of branches over two growing seasons and served as a good predictor of branching patterns observed in the third growing season. Thus, the developed branching index is a useful tool in peach breeding, allowing for the early selection of trees with more desirable tree architecture.

Free access

Thomas G. Beckman, Jose X. Chaparro and Wayne B. Sherman